Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The population structure of Streptococcus pneumoniae in a sample of 134 carried antibiotic-susceptible isolates, and 53 resistant and susceptible invasive isolates, was examined using a DNA-based version of multilocus enzyme electrophoresis: multilocus restriction typing (MLRT). This involved RFLP analysis of PCR products generated from nine loci of housekeeping genes located around the pneumococcal chromosome. The combination of alleles at each of the nine loci gave an allelic profile or restriction type (RT). All carried (throat or nasopharyngeal) isolates from children or adults in Oxford and Manchester, UK, and from an HIV-seropositive cohort in Nairobi, Kenya, showed an epidemic population structure. Twelve carried clonal groups, each with different serotypes, were identified at both locations within the UK. Almost all of the carried clones examined (16/17) were found to possess identical RTs or sequence types (STs) to invasive isolates, indicating that frequently carried clones are also associated with cases of invasive disease. As expected from previous studies, the population of 53 invasive, mainly penicillin-resistant, isolates was also found to be at linkage equilibrium. Serotype switching was identified among 14% of RTs that possessed two or more members, or 5.7% of individual isolates within these RTs. In support of a population structure in which there is frequent recombination, there is also clear evidence that the trpA/B locus within pneumococci has evolved by horizontal gene transfer. A non-serotypable isolate from an HIV-seropositive patient in Kenya was clearly genetically distinct from other strains studied, with unique alleles at eight out of nine loci examined. However, it was initially identified as a pneumococcus by a 16S RNA gene probe (Gen-Probe), optochin susceptibility and the presence of pneumolysin and autolysin.

Original publication

DOI

10.1099/00221287-145-11-3283

Type

Journal article

Journal

Microbiology

Publication Date

11/1999

Volume

145 ( Pt 11)

Pages

3283 - 3293

Keywords

Adolescent, Adult, Anti-Bacterial Agents, Bacterial Typing Techniques, Base Sequence, Carrier State, Child, Child, Preschool, Drug Resistance, Microbial, Female, Genes, Bacterial, Genetic Variation, Genetics, Population, HIV Seropositivity, Humans, Molecular Epidemiology, Molecular Sequence Data, Oropharynx, Pneumococcal Infections, Polymorphism, Restriction Fragment Length, Streptococcus pneumoniae, Virulence