Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Decisions based partly or solely on predictions from probabilistic models may be sensitive to model misspecification. Statisticians are taught from an early stage that "all models are wrong, but some are useful" however, little formal guidance exists on how to assess the impact of model approximation on decision making, or how to proceed when optimal actions appear sensitive to model fidelity. This article presents an overview of recent developments across different disciplines to address this. We review diagnostic techniques, including graphical approaches and summary statistics, to help highlight decisions made through minimised expected loss that are sensitive to model misspecification. We then consider formal methods for decision making under model misspecification by quantifying stability of optimal actions to perturbations to the model within a neighbourhood of model space. This neighbourhood is defined in either one of two ways. First, in a strong sense via an information (Kullback-Leibler) divergence around the approximating model. Second, using a Bayesian nonparametric model (prior) centred on the approximating model, in order to "average out" over possible misspecifications. This is presented in the context of recent work in the robust control, macroeconomics and financial mathematics literature. We adopt a Bayesian approach throughout although the presentation is agnostic to this position.

Original publication




Journal article


Statistical Science

Publication Date





465 - 489