Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The identification of inflammatory asthma phenotypes, using sputum analysis, has proven its value in diagnosis and disease monitoring. However due to technical limitations of sputum analysis, there is a strong need for fast and noninvasive diagnostics. This study included the activation state of eosinophils and neutrophils in peripheral blood to phenotype and monitor asthma. OBJECTIVES: To (i) construct a multivariable model using the activation state of blood granulocytes, (ii) compare its diagnostic value with sputum eosinophilia as gold standard and (iii) validate the model in an independent patient cohort. METHODS: Clinical parameters, activation of blood granulocytes and sputum characteristics were assessed in 115 adult patients with asthma (training cohort/Utrecht) and 34 patients (validation cohort/Oxford). RESULTS: The combination of blood eosinophil count, fractional exhaled nitric oxide, Asthma Control Questionnaire, medication use, nasal polyposis, aspirin sensitivity and neutrophil/eosinophil responsiveness upon stimulation with formyl-methionyl-leucyl phenylalanine was found to identify sputum eosinophilia with 90.5% sensitivity and 91.5% specificity in the training cohort and with 77% sensitivity and 71% specificity in the validation cohort (relatively high percentage on oral corticosteroids [OCS]). CONCLUSIONS: The proposed prediction model identifies eosinophilic asthma without the need for sputum induction. The model forms a noninvasive and externally validated test to assess eosinophilic asthma in patients not on OCS.

Original publication

DOI

10.1111/all.13117

Type

Journal article

Journal

Allergy

Publication Date

08/2017

Volume

72

Pages

1202 - 1211

Keywords

FeNO, aspirin sensitivity, eosinophil, nasal polyps, sputum, Adolescent, Adult, Aged, Asthma, Biomarkers, Eosinophilia, Eosinophils, Exhalation, Female, Humans, Leukocyte Count, Male, Middle Aged, Models, Statistical, Nitric Oxide, Phenotype, Prognosis, ROC Curve, Sputum, Young Adult