Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The efficacy of immunizing with a combination of simian immunodeficiency virus (SIV) Nef vaccines was evaluated. Four vaccinates received three intradermal immunizations with recombinant vaccinia virus that expressed SIV Nef, followed by three intramuscular immunizations with rDNA also expressing SIV Nef. Finally, the four vaccinates received two subcutaneous boosts with recombinant SIV Nef protein. This immunization protocol elicited anti-Nef antibodies in all of the vaccinates as well as specific proliferative responses. However, specific cytotoxic T cell responses were not detected before virus challenge. All vaccinates were challenged intravenously with 10 MID(50) of SIVmacJ5 along with four controls. All eight subjects became infected after SIV challenge and there were no group-specific differences in virus load as measured by virus titration and vRNA analysis. The results of this study support indirectly the report from Gallimore and colleagues (Nat Med 1995;1:1667) suggesting that CD8(+) T lymphocyte responses are required for Nef-based vaccines to restrict SIV infection. If Nef-based vaccines are to be beneficial in controlling infection with immunodeficiency viruses, then it will be necessary to develop more effective immunization protocols that elicit potent CD8(+) cell responses reproducibly.

Original publication

DOI

10.1089/08892220152644223

Type

Journal article

Journal

AIDS Res Hum Retroviruses

Publication Date

01/11/2001

Volume

17

Pages

1517 - 1526

Keywords

Animals, Antibodies, Viral, Gene Products, nef, Immunization Schedule, Lymphocyte Activation, Macaca fascicularis, Recombinant Proteins, SAIDS Vaccines, Simian Acquired Immunodeficiency Syndrome, Simian Immunodeficiency Virus, T-Lymphocytes, Vaccination, Vaccines, DNA, Vaccinia virus