Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this study, we examined the role of simian immunodeficiency virus (SIV)-specific cytotoxic T lymphocytes (CTLs) in macaques immunized with an attenuated strain of simian immunodeficiency virus (SIVmac239Deltanef) in protection against pathogenic challenge with SIVmac251. Our results indicate that attenuated SIVmac239Deltanef can elicit specific CTL precursor cells (CTLp), but no correlation was observed between breadth or strength of CTLp response to structural proteins SIV-Env, -Gamg or -Pol (as measured by limiting dilution assay) and protection against infection. In one animal, we longitudinally followed the SIV-Gag-specific response to an MHC class I Mamu-A*01-restricted epitope p11C, C-M using a tetrameric MHC/peptide complex reagent. A low frequency of SIV p11C, C-M peptide-specific tetramer-reactive cells was present at the time of challenge but could be expanded in vitro. Surprisingly, the low level of Mamu-A*01/p11C, C-M-specific CTLs induced through attenuated SIVmac239Deltanef vaccination increased in the absence of detectable SIVmac251 or SIVmac239Deltanef proviral DNA. Overall, our results suggest that protection against infection in this model can be achieved through more than one mechanism, with SIV-specific CTLs being important in controlling SIVmac239Deltanef viral replication postchallenge.

Original publication




Journal article



Publication Date





203 - 210


Animals, Female, Macaca mulatta, RNA, Viral, SAIDS Vaccines, Simian Acquired Immunodeficiency Syndrome, Simian Immunodeficiency Virus, T-Lymphocytes, Cytotoxic, Vaccination, Vaccines, Attenuated