Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Biological membranes control the flow of molecules into and out of cells, and they transmit information about the milieu. Structural studies of membrane-containing viruses provide one way to study these membranes in situ. Cryo-electron microscopy and image reconstruction of bacteriophage Bam35 to 7.3 A resolution revealed a membrane bilayer constrained within an icosahedrally symmetric pseudo T = 25 capsid. A total of 60 large transmembrane protein complexes affect the curvature and thickness of the membrane. Here, we describe these membrane parameters quantitatively. Furthermore, we show that Bam35 differs from bacteriophage PRD1 in these parameters, even though the two viruses share the same principles of capsid architecture. Most notably, each virus possesses a tape measure protein suggesting a general mechanism for capsid size determination in icosahedral viruses.

Original publication

DOI

10.1016/j.str.2005.08.020

Type

Journal article

Journal

Structure

Publication Date

12/2005

Volume

13

Pages

1819 - 1828

Keywords

Bacillus thuringiensis, Bacteriophage PRD1, Capsid, Cryoelectron Microscopy, Lipid Bilayers, Membrane Proteins, Membranes, Tectiviridae, Viral Proteins