Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Although noncovalent binding by small molecules cannot be assumed a priori to be stoichiometric in the crystal lattice, occupancy refinement of ligands is often avoided by convention. Occupancies tend to be set to unity, requiring the occupancy error to be modelled by the B factors, and residual weak density around the ligand is necessarily attributed to `disorder'. Where occupancy refinement is performed, the complementary, superposed unbound state is rarely modelled. Here, it is shown that superior accuracy is achieved by modelling the ligand as partially occupied and superposed on a ligand-free `ground-state' model. Explicit incorporation of this model of the crystal, obtained from a reference data set, allows constrained occupancy refinement with minimal fear of overfitting. Better representation of the crystal also leads to more meaningful refined atomic parameters such as the B factor, allowing more insight into dynamics in the crystal. An outline of an approach for algorithmically generating ensemble models of crystals is presented, assuming that data sets representing the ground state are available. The applicability of various electron-density metrics to the validation of the resulting models is assessed, and it is concluded that ensemble models consistently score better than the corresponding single-state models. Furthermore, it appears that ignoring the superposed ground state becomes the dominant source of model error, locally, once the overall model is accurate enough; modelling the local ground state properly is then more meaningful than correcting all remaining model errors globally, especially for low-occupancy ligands. Implications for the simultaneous refinement of B factors and occupancies, and for future evaluation of the limits of the approach, in particular its behaviour at lower data resolution, are discussed.

Original publication

DOI

10.1107/S2059798317003412

Type

Journal article

Journal

Acta Crystallogr D Struct Biol

Publication Date

01/03/2017

Volume

73

Pages

256 - 266

Keywords

crystallography, ligand binding, model validation, modelling, Algorithms, Binding Sites, Crystallography, X-Ray, Ligands, Molecular Docking Simulation, Protein Binding, Protein Conformation, Proteins, Software