Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Altered sensitivity to multiple antimalarial drugs is mediated by polymorphisms in pfmdr1, which encodes the Plasmodium falciparum multidrug resistance transporter. In Africa the N86Y and D1246Y polymorphisms have been shown to be selected by treatment, with artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) selecting for wild-type and mutant alleles, respectively. However, there has been little study of pfmdr1 haplotypes, in part because haplotype analyses are complicated by multiclonal infections. Methods We fit a haplotype frequency estimation model, which accounts for multiclonal infections, to the polymorphic pfmdr1 N86Y, Y184F, and D1246Y alleles in samples from a longitudinal trial comparing AL and DP to treat uncomplicated P falciparum malaria in Tororo, Uganda from 2007 to 2012. We regressed estimates onto covariates of trial arm and selective drug pressure. Results Yearly trends showed increasing frequency estimates for haplotypes with wild type pfmdr1 N86 and D1246 alleles and decreasing frequency estimates for haplotypes with the mutant pfmdr1 86Y allele. Considering days since prior therapy, we saw evidence suggestive of selection by AL for haplotypes with N86 combined with 184F, D1246, or both, and against all haplotypes with 86Y, and evidence suggestive of selection by DP for 86Y only when combined with Y184 and 1246Y (haplotype YYY) and against haplotypes NFD and NYY. Conclusions Based on our model, AL selected several haplotypes containing N86, whereas DP selection was haplotype specific, demonstrating the importance of haplotype analyses. Inverse selective pressure of AL and DP on the complementary haplotypes NFD and YYY suggests that rotating artemisinin-based antimalarial combination regimens may be the best treatment option to prevent resistance selection.

Original publication




Journal article


Open Forum Infectious Diseases


Oxford University Press (OUP)

Publication Date