Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Imprinted genes tend to be clustered in the genome. Most of these clusters have been found to be under the control of discrete DNA elements called imprinting centres (ICs) which are normally differentially methylated in the germline. ICs can regulate imprinted expression and epigenetic marks at many genes in the region, even those which lie several megabases away. Some of the molecular and cellular mechanisms by which ICs control other genes and regulatory regions in the cluster are becoming clear. One involves the insulation of genes on one side of the IC from enhancers on the other, mediated by the insulator protein CTCF and higher-order chromatin interactions. Another mechanism may involve non-coding RNAs that originate from the IC, targeting histone modifications to the surrounding genes. Given that several imprinting clusters contain CTCF dependent insulators and/or non-coding RNAs, it is likely that one or both of these two mechanisms regulate imprinting at many loci. Both mechanisms involve a variety of epigenetic marks including DNA methylation and histone modifications but the hierarchy of and interactions between these modifications are not yet understood. The challenge now is to establish a chain of developmental events beginning with differential methylation of an IC in the germline and ending with imprinting of many genes, often in a lineage dependent manner.

Original publication

DOI

10.1159/000090818

Type

Journal article

Journal

Cytogenet Genome Res

Publication Date

2006

Volume

113

Pages

81 - 89

Keywords

Animals, Chromatin, Female, Genomic Imprinting, Male, Mammals, Models, Genetic, Multigene Family, RNA, X Chromosome