Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Overtopping of seawalls presents a considerable hazard to people and property near the coast and accurate predictions of overtopping volumes are essential in informing seawall construction. The methods most commonly used for the prediction of time-averaged overtopping volumes are parametric regression and numerical modelling. In this paper overtopping volumes are predicted using artificial neural networks. This approach is inherently non-parametric and accepts data from a variety of structural configurations and sea-states. Two different types of neural network are considered: multi-layer perceptron networks and radial basis function networks. It was found that the radial basis function networks considerably outperform both the multi-layer perceptron networks and the curve-fitting (parametric regression) regime, and approach bespoke numerical simulations in accuracy. Unlike numerical simulation, the neural network approach gives generic prediction across a range of structures and sea-states and therefore incurs considerably less computational cost.

Original publication

DOI

10.1680/maen.2005.158.3.123

Type

Journal article

Journal

Proceedings of the Institution of Civil Engineers: Maritime Engineering

Publication Date

01/09/2005

Volume

158

Pages

123 - 133