Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 Elsevier B.V. This paper explains a novel approach for knowledge discovery from data generated by Point of Care (POC) devices. A very important element of this type of knowledge extraction is that the POC generated data would never be identifiable, thereby protecting the rights and the anonymity of the individual, whilst still allowing for vital population-level evidence to be obtained. This paper also reveals a real-world implementation of the novel approach in a big data analytics system. Using Internet of Things (IoT) enabled POC devices and the big data analytics system, the data can be collected, stored, and analyzed in batch and real-time modes to provide a detailed picture of a healthcare system as well to identify high-risk populations and their locations. In addition, the system offers benefits to national health authorities in forms of optimized resource allocation (from allocating consumables to finding the best location for new labs) thus supports efficient and timely decision-making processes.

Original publication

DOI

10.1016/j.pmcj.2017.06.013

Type

Journal article

Journal

Pervasive and Mobile Computing

Publication Date

01/12/2017

Volume

42

Pages

470 - 486