Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nucleotide monophosphate kinases (NMPKs) are potential antimicrobial drug targets owing to their role in supplying DNA and RNA precursors. The present work reports the crystal structure of Staphylococcus aureus guanylate monophosphate kinase (SaGMK) at 1.9 A resolution. The structure shows that unlike most GMKs SaGMK is dimeric, confirming the role of the extended C-terminus in dimer formation as first observed for Escherichia coli GMK (EcGMK). One of the two SaGMK dimers within the crystal asymmetric unit has two monomers in different conformations: an open form with a bound sulfate ion (mimicking the beta-phosphate of ATP) and a closed form with bound GMP and sulfate ion. GMP-induced domain movements in SaGMK can thus be defined by comparison of these conformational states. Like other GMKs, the binding of GMP firstly triggers a partial closure of the enzyme, diminishing the distance between the GMP-binding and ATP-binding sites. In addition, the closed structure shows the presence of a potassium ion in contact with the guanine ring of GMP. The potassium ion appears to form an integral part of the GMP-binding site, as the Tyr36 side chain has significantly moved to form a metal ion-ligand coordination involving the lone pair of the side-chain O atom. The potassium-binding site might also be exploited in the design of novel inhibitors.

Original publication

DOI

10.1107/S174430910603613X

Type

Journal article

Journal

Acta Crystallogr Sect F Struct Biol Cryst Commun

Publication Date

01/10/2006

Volume

62

Pages

949 - 953

Keywords

Amino Acid Sequence, Animals, Binding Sites, Crystallization, Crystallography, X-Ray, Guanosine Monophosphate, Guanylate Kinases, Humans, Mice, Models, Molecular, Molecular Sequence Data, Protein Conformation, Protein Structure, Tertiary, Sequence Alignment, Staphylococcus aureus