Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The selection of drug resistant viruses is a major problem in efforts to combat HIV and AIDS, hence, new compounds are required. We report crystal structures of wild-type and mutant HIV-1 RT with bound non-nucleoside (NNRTI) GW420867X, aimed at investigating the basis for its high potency and improved drug resistance profile compared to the first-generation drug nevirapine. GW420867X occupies a smaller volume than many NNRTIs, yet accesses key regions of the binding pocket. GW420867X has few contacts with Tyr188, hence, explaining the small effect of mutating this residue on inhibitor-binding potency. In a mutated NNRTI pocket, GW420867X either remains in a similar position compared to wild-type (RT(Leu100Ile) and RT(Tyr188Cys)) or rearranges within the pocket (RT(Lys101Glu)). For RT(Leu100Ile), GW420867X does not shift position, in spite of forming different side-chain contacts. The small bulk of GW420867X allows adaptation to a mutated NNRTI binding site by repositioning or readjustment of side-chain contacts with only small reductions in binding affinity.

Original publication




Journal article


J Med Chem

Publication Date





2301 - 2309


Anti-HIV Agents, Binding Sites, Crystallography, X-Ray, Drug Resistance, Viral, HIV Reverse Transcriptase, HIV-1, Models, Molecular, Molecular Structure, Mutation, Protein Binding, Quinoxalines, Reverse Transcriptase Inhibitors