Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. Oxygen dissociation curves are reported for human haemoglobins A1, FII, FI, A1c and Raleigh (beta1 valine leads to acetylalanine) and for horse haemoglobin in the absence and presence of 2,3-diphosphoglycerate (DPG), or 4,4'-diformyl-2-bibenzyl oxyacetic acid, or the bisulphite addition compound of the latter. 2. These haemoglobins were selected because their amino acid sequences are different at the DPG receptor site of human adult deoxyhaemoglobin. 3. The size of the shifts of the dissociation curves are in the sequence expected from the postulated numbers of interactions made by each compound with each haemoglobin type, based on the assumption of a common receptor site for the three compounds. 4. Multiple linear regression analysis shows that the free energies of interaction of the compounds with the haemoglobins may be predicted, to a first approximation, by summing the number of ionic and covalent bonds predicted for each effector-receptor combination, a reversible covalent bond contributing about twice as much energy (-6.78 kJmol-1) as an ionic interaction (-3.14 kJmol-1).

Original publication




Journal article


Br J Pharmacol

Publication Date





535 - 543


Adult, Animals, Binding Sites, Female, Fetus, Hemoglobins, Horses, Humans, In Vitro Techniques, Oxygen Consumption, Pregnancy, Protein Binding, Species Specificity