Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The homologous bacterially expressed cholesterol-dependent cytolysins (CDCs) form pores via oligomerization; this must occur preferentially once the target membrane has been engaged. Conformational changes in CDCs then drive partition from an aqueous environment to a lipidic one. This review addresses how premature oligomerization is prevented, how conformational changes are triggered, and how cooperativity between subunits brings about new functionality absent from isolated protomers. Variations are found in the answers provided by the CDCs to these issues. Some toxins use pH as a trigger of activity, but recent results have shown that dimerization in solution is an alternative way of preventing premature oligomerization, in particular for the CDC from Clostridium perfringens, perfringolysin. More controversially, there is still no resolution to the debate as to whether incomplete (arciform) oligomers form pores: recent results again suggest that they do.

Original publication




Journal article



Publication Date





1097 - 1106


Cholesterol, Clostridium perfringens, Cytotoxins, Dimerization, Protein Structure, Tertiary