Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper extends dynamic prediction by landmarking to recurrent event data. The motivating data comprised post-kidney transplantation records of repeated infections and repeated measurements of multiple markers. At each landmark time point ts, a Cox proportional hazards model with a frailty term was fitted using data of individuals who were at risk at landmark s. This model included the time-updated marker values at ts as time-fixed covariates. Based on a stacked data set that merged all landmark data sets, we considered supermodels that allow parameters to depend on the landmarks in a smooth fashion. We described and evaluated four ways to parameterize the supermodels for recurrent event data. With both the study data and simulated data sets, we compared supermodels that were fitted on stacked data sets that consisted of either overlapping or non-overlapping landmark periods. We observed that for recurrent event data, the supermodels may yield biased estimates when overlapping landmark periods are used for stacking. Using the best supermodel amongst the ones considered, we dynamically estimated the probability to remain infection free between ts and a prediction horizon thor, conditional on the information available at ts.

Original publication

DOI

10.1177/0962280216643563

Type

Journal article

Journal

Stat Methods Med Res

Publication Date

03/2018

Volume

27

Pages

832 - 845

Keywords

Dynamic prediction, frailty models, landmark, multiple markers, recurrent events