Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death protein-1 (PD-1) as an immune checkpoint. Reactivating the immune response by inhibiting PD-L1 using therapeutic antibodies provides substantial clinical benefits in many, though not all, melanoma patients. However, transcriptional suppression of PD-L1 expression as an alternative therapeutic anti-melanoma strategy has not been exploited. Here we provide biochemical evidence demonstrating that ultraviolet radiation (UVR) induction of PD-L1 in skin is directly controlled by nuclear factor E2-related transcription factor 2 (NRF2). Depletion of NRF2 significantly induces tumor infiltration by both CD8+ and CD4+ T cells to suppress melanoma progression, and combining NRF2 inhibition with anti-PD-1 treatment enhanced its anti-tumor function. Our studies identify a critical and targetable PD-L1 upstream regulator and provide an alternative strategy to inhibit the PD-1/PD-L1 signaling in melanoma treatment.

Original publication




Journal article



Publication Date