Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACT The evolution of the capsular biosynthetic ( cps ) locus of serogroup 6 Streptococcus pneumoniae was investigated by analyzing sequence variation within three serotype-specific cps genes from 102 serotype 6A and 6B isolates. Sequence variation within these cps genes was related to the genetic relatedness of the isolates, determined by multilocus sequence typing, and to the inferred patterns of recent evolutionary descent, explored using the eBURST algorithm. The serotype-specific cps genes had a low percent G+C, and there was a low level of sequence diversity in this region among serotype 6A and 6B isolates. There was also little sequence divergence between these serotypes, suggesting a single introduction of an ancestral cps sequence, followed by slight divergence to create serotypes 6A and 6B. A minority of serotype 6B isolates had cps sequences (class 2 sequences) that were ∼5% divergent from those of other serotype 6B isolates (class 1 sequences) and which may have arisen by a second, more recent introduction from a related but distinct source. Expression of a serotype 6A or 6B capsule correlated perfectly with a single nonsynonymous polymorphism within wciP , the rhamnosyl transferase gene. In addition to ample evidence of the horizontal transfer of the serotype 6A and 6B cps locus into unrelated lineages, there was evidence for relatively frequent changes from serotype 6A to 6B, and vice versa, among very closely related isolates and examples of recent recombinational events between class 1 and 2 cps serogroup 6 sequences.

Original publication

DOI

10.1128/jb.186.24.8181-8192.2004

Type

Journal article

Journal

Journal of Bacteriology

Publisher

American Society for Microbiology

Publication Date

15/12/2004

Volume

186

Pages

8181 - 8192