Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractMass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host and the target mosquitoes. Using a mini-pig model, we show that drug-mediated cytochrome P450/ABC transporter inhibition results in a 3-fold increase in the time ivermectin remains above mosquito-killing concentrations. In contrast, P450/ABC transporter induction with rifampicin markedly impaired ivermectin absorption. The same ketoconazole-mediated cytochrome/ABC transporter inhibition also occurs outside the mammal host and enhances the mortality of Anopheles gambiae. This was proven by using the samples from the mini-pig experiments to conduct an ex-vivo synergistic bioassay by membrane-feeding Anopheles mosquitoes. Inhibiting the same cytochrome/xenobiotic pump complex in two different organisms to simultaneously boost the pharmacokinetic and pharmacodynamic activity of a drug is a novel concept that could be applied to other systems. Although the lack of a dose-response effect in the synergistic bioassay warrants further exploration, our study may have broad implications for the control of parasitic and vector-borne diseases.

Original publication

DOI

10.1038/s41598-017-08906-x

Type

Journal article

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

17/08/2017

Volume

7