Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Reporting of strategic healthcare-associated infections (HCAIs) to Public Health England is mandatory for all acute hospital trusts in England, via a web-based HCAI Data Capture System (HCAI-DCS). AIM: Investigate the feasibility of automating the current, manual, HCAI reporting using linked electronic health records (linked-EHR), and assess its level of accuracy. METHODS: All data previously submitted through the HCAI-DCS by the Oxford University Hospitals infection control (IC) team for methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA, MSSA), Clostridium difficile, and Escherichia coli, through March 2017 were downloaded and compared to outputs created from linked-EHR, with detailed comparisons between 2013-2017. FINDINGS: Total MRSA, MSSA, E. coli and C. difficile cases entered by the IC team vs linked-EHR were 428 vs 432, 795 vs 816, 2454 vs 2450 and 3365 vs 3393 respectively. From 2013-2017, most discrepancies (32/37 (86%)) were likely due to IC recording errors. Patient and specimen identifiers were completed for >98% of cases by both methods, with very high agreement (>97%). Fields relating to the patient at the time the specimen was taken were complete to a similarly high level (>99% IC, >97% linked-EHR), and agreement was fairly good (>80%) except for the main and treatment specialties (57% and 54% respectively) and the patient category (55%). Optional, organism-specific data-fields were less complete, by both methods. Where comparisons were possible, agreement was reasonably high (mostly 70-90%). CONCLUSION: Basic factual information, such as demographic data, is almost-certainly better automated, and many other data fields can potentially be populated successfully from linked-EHR. Manual data collection is time-consuming and inefficient; automated electronic data collection would leave healthcare professionals free to focus on clinical rather than administrative work.

Original publication




Journal article


PLoS One

Publication Date





Cross Infection, Datasets as Topic, Disease Notification, Electronic Health Records, England, Epidemiological Monitoring, Health Plan Implementation, Hospitals, University, Humans, Infection Control, Mandatory Programs, Program Evaluation, Public Health Administration, Public Health Informatics, Time Factors