Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many approaches for variable selection with multiply imputed data in the development of a prognostic model have been proposed. However, no method prevails as uniformly best. We conducted a simulation study with a binary outcome and a logistic regression model to compare two classes of variable selection methods in the presence of MI data: (I) Model selection on bootstrap data, using backward elimination based on AIC or lasso, and fit the final model based on the most frequently (e.g. ≥ 50 % ) selected variables over all MI and bootstrap data sets; (II) Model selection on original MI data, using lasso. The final model is obtained by (i) averaging estimates of variables that were selected in any MI data set or (ii) in 50% of the MI data; (iii) performing lasso on the stacked MI data, and (iv) as in (iii) but using individual weights as determined by the fraction of missingness. In all lasso models, we used both the optimal penalty and the 1-se rule. We considered recalibrating models to correct for overshrinkage due to the suboptimal penalty by refitting the linear predictor or all individual variables. We applied the methods on a real dataset of 951 adult patients with tuberculous meningitis to predict mortality within nine months. Overall, applying lasso selection with the 1-se penalty shows the best performance, both in approach I and II. Stacking MI data is an attractive approach because it does not require choosing a selection threshold when combining results from separate MI data sets.

Original publication

DOI

10.1002/bimj.201700232

Type

Journal article

Journal

Biom J

Publication Date

03/2019

Volume

61

Pages

343 - 356

Keywords

lasso, multiply imputed data, prediction, stacked data, variable selection