Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Summary Objectives: As technology continues to evolve and rise in various industries, such as healthcare, science, education, and gaming, a sophisticated concept known as Big Data is surfacing. The concept of analytics aims to understand data. We set out to portray and discuss perspectives of the evolving use of Big Data in science and healthcare and, to examine some of the opportunities and challenges. Methods: A literature review was conducted to highlight the implications associated with the use of Big Data in scientific research and healthcare innovations, both on a large and small scale. Results: Scientists and health-care providers may learn from one another when it comes to understanding the value of Big Data and analytics. Small data, derived by patients and consumers, also requires analytics to become actionable. Connectivism provides a framework for the use of Big Data and analytics in the areas of science and healthcare. This theory assists individuals to recognize and synthesize how human connections are driving the increase in data. Despite the volume and velocity of Big Data, it is truly about technology connecting humans and assisting them to construct knowledge in new ways. Concluding Thoughts: The concept of Big Data and associated analytics are to be taken seriously when approaching the use of vast volumes of both structured and unstructured data in science and health-care. Future exploration of issues surrounding data privacy, confidentiality, and education are needed. A greater focus on data from social media, the quantified self-movement, and the application of analytics to “small data” would also be useful.

Original publication

DOI

10.15265/iy-2014-0004

Type

Journal article

Journal

Yearbook of Medical Informatics

Publisher

Georg Thieme Verlag KG

Publication Date

08/2014

Volume

23

Pages

21 - 26