Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Neutrophil activation results in Plasmodium parasite killing in vitro, but neutrophil products including neutrophil extracellular traps (NETs) mediate host organ damage and may contribute to severe malaria. The role of NETs in the pathogenesis of severe malaria has not been examined. METHODS: In Papua, Indonesia, we enrolled adults with symptomatic Plasmodium falciparum (n = 47 uncomplicated, n = 8 severe), Plasmodium vivax (n = 37), or Plasmodium malariae (n = 14) malaria; asymptomatic P falciparum (n = 19) or P vivax (n = 21) parasitemia; and healthy adults (n = 23) without parasitemia. Neutrophil activation and NETs were quantified by immunoassays and microscopy and correlated with parasite biomass and disease severity. RESULTS: In patients with symptomatic malaria, neutrophil activation and NET counts were increased in all 3 Plasmodium species. In falciparum malaria, neutrophil activation and NET counts positively correlated with parasite biomass (Spearman rho = 0.41, P = .005 and r2 = 0.26, P = .002, respectively) and were significantly increased in severe disease. In contrast, NETs were inversely associated with parasitemia in adults with asymptomatic P falciparum infection (r2 = 0.24, P = .031) but not asymptomatic P vivax infection. CONCLUSIONS: Although NETs may inhibit parasite growth in asymptomatic P falciparum infection, neutrophil activation and NET release may contribute to pathogenesis in severe falciparum malaria. Agents with potential to attenuate these processes should be evaluated.

Original publication

DOI

10.1093/infdis/jiy661

Type

Journal article

Journal

J Infect Dis

Publication Date

24/05/2019

Volume

219

Pages

1994 - 2004

Keywords

Plasmodium , malaria, neutrophil activation, neutrophil extracellular traps