Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractObstacles to developing an HIV-1 vaccine include extensive viral diversity and lack of correlates of protective immunity. High mutation rates allow HIV-1 to adapt rapidly to selective forces such as antiretroviral therapy and immune pressure, including HIV-1–specific CTLs that select viral variants which escape T-cell recognition. Multiple factors contribute to HIV-1 diversity, making it difficult to disentangle the contribution of CTL selection without using complex analytical approaches. We describe an HIV-1 outbreak in 231 former plasma donors in China, where a narrow-source virus that had contaminated the donation system was apparently transmitted to many persons contemporaneously. The genetic divergence now evident in these subjects should uniquely reveal how much viral diversity at the population level is solely attributable to host factors. We found significant correlations between pair-wise divergence of viral sequences and HLA class I genotypes across epitope-length windows in HIV-1 Gag, reverse transcriptase, integrase, and Nef, corresponding to sites of 140 HLA class I allele-associated viral polymorphisms. Of all polymorphic sites across these 4 proteins, 24%-56% were sites of HLA-associated selection. These data confirm that CTL pressure has a major effect on inter-host HIV-1 viral diversity and probably represents a key element of viral control.

Original publication

DOI

10.1182/blood-2010-06-291963

Type

Journal article

Journal

Blood

Publisher

American Society of Hematology

Publication Date

07/07/2011

Volume

118

Pages

98 - 106