Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Adenosine triphosphate (ATP) ligation of P2X(7) receptors expressed on human macrophages that are infected with mycobacteria induces cell death and subsequent loss of intracellular bacterial viability. Marked heterogeneity observed in cell donor ATP responsiveness suggests that this antimycobacterial mechanism may be genetically regulated. Five single-nucleotide polymorphisms (SNPs) previously identified in a putative 1.8-kb promoter region upstream of P2RX7 exon 1 were screened for associations with clinical tuberculosis. The frequencies of these promoter SNPs and a polymorphism in P2RX7 exon 13 at position 1513 were compared among >300 Gambian patients with tuberculosis and >160 ethnically matched control subjects by sequence-specific oligonucleotide hybridization and ligation detection reaction analysis. A significant protective association against tuberculosis was found for 1 promoter SNP, at nucleotide position -762 (odds ratio [OR] for variant C allele, 0.70; 95% confidence interval [CI], 0.54-0.89; P=.003; OR for CC genotype, 0.545; 95% CI, 0.318-0.934; P=.027). This association supports a role for ATP/P2X(7)-mediated host regulation of Mycobacterium tuberculosis infection.

Original publication

DOI

10.1086/344351

Type

Conference paper

Publication Date

15/11/2002

Volume

186

Pages

1458 - 1462

Keywords

Adult, Female, Gambia, Genetic Predisposition to Disease, Humans, Male, Polymorphism, Genetic, Receptors, Purinergic P2, Receptors, Purinergic P2X7, Tuberculosis