Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:We evaluated use of phylogenetic methods to predict the direction of human immunodeficiency virus (HIV) transmission. METHODS:For 33 pairs of HIV-infected patients (hereafter, "index patients") and their partners who acquired genetically linked HIV infection during the study, samples were collected from partners and index patients close to the time when the partner seroconverted (hereafter, "SC samples"); for 31 pairs, samples collected from the index patient at an earlier time point (hereafter, "early index samples") were also available. Phylogenies were inferred using env next-generation sequences (1 tree per pair/subtype). The direction of transmission (DoT) predicted from each tree was classified as correct or incorrect on the basis of which sequences (those from the index patient or the partner) were closest to the root. DoT was also assessed using maximum parsimony to infer ancestral node states for 100 bootstrap trees. RESULTS:DoT was predicted correctly for both single-pair and subtype-specific trees in 22 pairs (67%) by using SC samples and in 23 pairs (74%) by using early index samples. DoT was predicted incorrectly for 4 pairs (15%) by using SC or early index samples. In the bootstrap analysis, DoT was predicted correctly for 18 pairs (55%) by using SC samples and for 24 pairs (73%) by using early index samples. DoT was predicted incorrectly for 7 pairs (21%) by using SC samples and for 4 pairs (13%) by using early index samples. CONCLUSIONS:Phylogenetic methods based solely on the tree topology of HIV env sequences, particularly without consideration of phylogenetic uncertainty, may be insufficient for determining DoT.

Original publication

DOI

10.1093/infdis/jiy734

Type

Journal article

Journal

The Journal of infectious diseases

Publication Date

09/2019

Volume

220

Pages

1406 - 1413

Addresses

BioInfoExperts, Thibodaux, Louisiana.