Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bisulfite sequencing has been the gold standard for mapping DNA modifications including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) for decades1-4. However, this harsh chemical treatment degrades the majority of the DNA and generates sequencing libraries with low complexity2,5,6. Here, we present a bisulfite-free and base-level-resolution sequencing method, TET-assisted pyridine borane sequencing (TAPS), for detection of 5mC and 5hmC. TAPS combines ten-eleven translocation (TET) oxidation of 5mC and 5hmC to 5-carboxylcytosine (5caC) with pyridine borane reduction of 5caC to dihydrouracil (DHU). Subsequent PCR converts DHU to thymine, enabling a C-to-T transition of 5mC and 5hmC. TAPS detects modifications directly with high sensitivity and specificity, without affecting unmodified cytosines. This method is nondestructive, preserving DNA fragments over 10 kilobases long. We applied TAPS to the whole-genome mapping of 5mC and 5hmC in mouse embryonic stem cells and show that, compared with bisulfite sequencing, TAPS results in higher mapping rates, more even coverage and lower sequencing costs, thus enabling higher quality, more comprehensive and cheaper methylome analyses.

Original publication




Journal article


Nature biotechnology

Publication Date





424 - 429


Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.


Animals, Humans, Mice, Sulfites, 5-Methylcytosine, DNA, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Sequence Analysis, DNA, Biotechnology, DNA Methylation, Base Sequence, CpG Islands, Whole Genome Sequencing