Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractType-A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels (pLGICs), typically consisting of α/β/γ subunit combinations. They are the principal mediators of inhibitory neurotransmission throughout the central nervous system and targets of major clinical drugs, such as benzodiazepines (BZDs) used to treat epilepsy, insomnia, anxiety, panic disorder and muscle spasm. However, the structures of heteromeric receptors and the molecular basis of BZD operation remain unknown. Here we report the cryo-EM structure of a human α1β3γ2 GABAAR in complex with GABA and a nanobody that acts as a novel positive allosteric modulator (PAM). The receptor subunits assume a unified quaternary activated conformation around an open pore. We also present crystal structures of engineered α5 and α5γ2 GABAAR constructs, revealing the interfacial site for allosteric modulation by BZDs, including the binding modes and the conformational impact of the potent anxiolytic and partial PAM, bretazenil, and the BZD antagonist, flumazenil. These findings provide the foundation for understanding the mechanistic basis of GABAAR activation.

Original publication

DOI

10.1101/338343

Type

Journal article

Publication Date

04/06/2018