Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), two of the best-studied DNA modifications, play crucial roles in normal development and disease in mammals. Although 5-methylcytidine (m5C) and 5-hydroxymethylcytidine (hm5C) have also been identified in RNA, their distribution and biological function in RNA remain largely unexplored, due to the lack of suitable sequencing methods. Here, we report a base-resolution sequencing method for hm5C in RNA. We applied the selective oxidation of hm5C to trihydroxylated-thymine (thT) mediated by peroxotungstate. thT was subsequently converted to T during cDNA synthesis using a thermostable group II intron reverse transcriptase (TGIRT). Base-resolution analysis of the hm5C sites in RNA was performed using Sanger sequencing. Furthermore, in combination with the TET enzyme oxidation of m5C to hm5C in RNA, we expand the use of peroxotungstate oxidation to detect m5C in RNA at base-resolution. By using this method, we confirmed three known m5C sites in human tRNA, demonstrating the applicability of our method in analyzing real RNA samples.

Original publication




Journal article


Chem Commun (Camb)

Publication Date





2328 - 2331