Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major challenge to tuberculosis (TB) vaccine development is the lack of a validated immune correlate of protection. Mycobacterial growth inhibition assays (MGIAs) represent an unbiased measure of the ability to control mycobacterial growth in vitro. A successful MGIA could be applied to preclinical and clinical post-vaccination samples to aid in the selection of novel vaccine candidates at an early stage and provide a relevant measure of immunogenicity and protection. However, assay harmonisation is critical to ensure that comparable information can be extracted from different vaccine studies. As part of the FP7 European Research Infrastructures for Poverty Related Diseases (EURIPRED) consortium, we aimed to optimise the direct MGIA, assess repeatability and reproducibility, and harmonise the assay across different laboratories. We observed an improvement in repeatability with increased cell number and increased mycobacterial input. Furthermore, we determined that co-culturing in static 48-well plates compared with rotating 2 ml tubes resulted in a 23% increase in cell viability and a 500-fold increase in interferon-gamma (IFN-γ) production on average, as well as improved reproducibility between replicates, assay runs and sites. Applying the optimised conditions, we report repeatability to be <5% coefficient of variation (CV), intermediate precision to be <20% CV, and inter-site reproducibility to be <30% CV; levels within acceptable limits for a functional cell-based assay. Using relevant clinical samples, we demonstrated comparable results across two shared sample sets at three sites. Based on these findings, we have established a standardised operating procedure (SOP) for the use of the direct PBMC MGIA in TB vaccine development.

Original publication

DOI

10.1016/j.jim.2019.01.006

Type

Journal article

Journal

Journal of immunological methods

Publication Date

06/2019

Volume

469

Pages

1 - 10

Addresses

The Jenner Institute, University of Oxford, UK. Electronic address: rachel.tanner@ndm.ox.ac.uk.

Keywords

Leukocytes, Mononuclear, Cells, Cultured, Humans, Mycobacterium bovis, Tuberculosis Vaccines, Cryopreservation, Cell Culture Techniques, Bacteriological Techniques, Reproducibility of Results, Host-Pathogen Interactions, Interferon-gamma, Interferon-gamma Release Tests, Drug Development