Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundWe examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry.MethodsMeta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP).ResultsWe did not find any variant associated with breast cancer-specific mortality at P -8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster.ConclusionsWe uncovered germline variants on chromosome 7 at BFDP 

Original publication

DOI

10.1038/s41416-019-0393-x

Type

Journal article

Journal

British journal of cancer

Publication Date

03/2019

Volume

120

Pages

647 - 657

Addresses

The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands.

Keywords

NBCS Collaborators, Chromosomes, Human, Pair 7, Humans, Breast Neoplasms, Receptors, Estrogen, Prognosis, Proportional Hazards Models, Bayes Theorem, Female, Genetic Variation, Genome-Wide Association Study, White People