Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Paget’s disease of bone (PDB) is a chronic skeletal disorder that can affect one or several bones in individuals older than 55 y of age. PDB-like changes have been reported in archaeological remains as old as Roman, although accurate diagnosis and natural history of the disease is lacking. Six skeletons from a collection of 130 excavated at Norton Priory in the North West of England, which dates to medieval times, show atypical and extensive pathological changes resembling contemporary PDB affecting as many as 75% of individual skeletons. Disease prevalence in the remaining collection is high, at least 16% of adults, with age at death estimations as low as 35 y. Despite these atypical features, paleoproteomic analysis identified sequestosome 1 (SQSTM1) or p62, a protein central to the pathological milieu of PDB, as one of the few noncollagenous human sequences preserved in skeletal samples. Targeted proteomic analysis detected >60% of the ancient p62 primary sequence, with Western blotting indicating p62 abnormalities, including in dentition. Direct sequencing of ancient DNA excluded contemporary PDB-associated SQSTM1 mutations. Our observations indicate that the ancient p62 protein is likely modified within its C-terminal ubiquitin-associated domain. Ancient miRNAs were remarkably preserved in an osteosarcoma from a skeleton with extensive disease, with miR-16 expression consistent with that reported in contemporary PDB-associated bone tumors. Our work displays the use of proteomics to inform diagnosis of ancient diseases such as atypical PDB, which has unusual features presumably potentiated by yet-unidentified environmental or genetic factors.

Original publication

DOI

10.1073/pnas.1820556116

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

21/05/2019

Volume

116

Pages

10463 - 10472