Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

David Wedge

David Wedge


The focus of my research is cancer evolution and heterogeneity. Cancers are made up of a heterogeneous mix of cells, each bearing a different set of mutations in its DNA. We aim to characterise groups of cells, or ‘subclones’, according to their mutational profiles and to study the interaction between subclones.

Tumours are difficult to treat because they change over time, gaining mutations that enable them to metastasise to distant organs or that result in resistance to treatment. By comparing multiple samples, we can identify those mutations that cause relapse and progression. Using genetic markers, we can also track the spread of disease, giving us insights into the mechanisms and processes involved in cancer growth and metastasis.

Cancer is a complex disease and the analysis of large numbers of tumours is key to understanding the factors that determine their virulence. The International Cancer Genome Consortium (ICGC) has collected and whole-genome sequenced several thousand cancer samples. I co-lead the Pan-Cancer Working Group on Evolution and Heterogeneity, an international collaboration that is using the DNA sequences of 2800 of these cancer samples to study evolution and heterogeneity across more than 30 different cancer types, including prostate, breast, lung, oesophageal and ovarian cancers.

Recent publications

More publications