Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Exscientia, the leading AI Drug Discovery company, has today announced its collaboration with the Alzheimer’s Research UK Oxford Drug Discovery Institute (ARUK-ODDI) to develop medicines targeting neuroinflammation for the treatment of Alzheimer’s disease (AD).

brain

AD is the most common form of dementia worldwide, with an estimated 44 million people living with AD or related form of dementia [1]. Symptoms of this progressive disease are debilitating, distressing – for both those with the disease and their loved ones –and there is currently no cure [3].

This exciting new partnership unites Exscientia's AI-driven molecular design capabilities with the deep therapy area knowledge and technical expertise of the ARUK-ODDI.

The collaboration will focus on a specific neuroinflammatory pathway implicated in the development of AD. Activation of the NLRP3 inflammasome has been shown to have an important role in AD pathogenesis and, while there have been other efforts to develop anti-inflammatory drugs for AD [4], targeting NLRP3 inflammasome inhibition in the brain is an innovative therapeutic approach.

Exscientia’s proven AI-driven technology will be applied to efficiently generate high-value novel clinical assets targeting this pathway. Feeding into this are chemical starting points that modulate NLRP3 inflammasome formation identified over years of research by the ARUK-ODDI. Coupling Exscientia's Centaur Chemist® AI-design systems with the ARUK-ODDI’s biology and screening expertise is expected to speed up delivery of distinct candidate molecules for AD.

Exscientia’s COO David Hallett commented: “Alzheimer’s is a dreadful disease that affects tens of millions worldwide. Despite clinical trials of numerous agents over a wide range of mechanisms, the last new Alzheimer’s medication, was approved nearly two decades ago. Alzheimer’s drug development is costly, complex and extremely challenging with clinical trial failure rate being the highest of any therapeutic area. Our mission is to make safer, more effective drugs available to all and we are excited to utilise our AI drug discovery platform and work alongside the expertise of the Alzheimer’s Research UK-Oxford Drug Discovery Institute team to accelerate innovation and develop potential medicines to solve this global epidemic.”  

Expanding on this new relationship, Prof John Davis, CSO of the Alzheimer’s Research UK-Oxford Drug Discovery Institute drew attention to the benefits gained from the complementary capabilities of both partners: "We are delighted to be partnering with Exscientia. Their state-of-the-art AI capabilities will enable us to investigate multiple molecules in parallel and accelerate the project towards candidate declaration.  Human genetic variation points towards a critical role for the body’s immune system in an individual’s risk of developing Alzheimer’s disease.  It is vital that we develop treatments that target neuroinflammatory mechanisms underlying dementia.”

Dr Sara Imarisio, Head of Research at Alzheimer’s Research UK said:
“Scientist’s at our ARUK-Oxford Drug Discovery Institute are ideally placed to capitalise on the latest discoveries and work with partners to help translate this into drugs that could be tested in clinical trials. With nearly one million people in the UK living with dementia, there isn’t a moment to waste.”

References

[1] World Health Organization. Fact Sheet. Dementia. Accessed 28 January 2021

[2] Alzheimer’s News Today. Accessed 28 January 2021

[3] NHS. Alzheimer’s Disease. Accessed 28 January 2021

[4] Immunity’s flipside: Microglia promote Alzheimer’s pathology during inflammation. Accessed 28 January 2021

 

Similar stories

Daily contact COVID-19 testing for students effective at controlling transmission in schools

A study by the University of Oxford has found that daily testing of secondary school students who were in contact with someone with COVID-19 was just as effective in controlling school transmission as the current 10-day contact isolation policy.

How did people in Europe and SE Asia experience the first COVID-19 wave?

An international team, led by Phaik Yeong Cheah, conducted an anonymous online survey from May-June 2020, asking 5,058 people in Thailand, Malaysia, United Kingdom, Italy and Slovenia to share their experiences. Anne Osterrieder and colleagues report the unequal impacts of public health measures, and the prevalence of ‘fake news’.

T-cell ‘training grounds’ behind robust immune system response seen in adenovirus vaccines

Adenovirus vaccine vectors, such as the ChAdOx1 nCov-19 construct which has risen to prominence as a major vaccine for COVID-19, may generate robust long-term immune system responses, according to scientists from the Universities of Oxford and the Cantonal Hospital St.Gallen, Switzerland

HIV vaccine trial starts at Oxford

NDM's Jenner Institute today started vaccinations of a novel HIV vaccine candidate as part of a Phase I clinical trial in the UK.

RECOVERY Trial identifies another effective COVID-19 treatment

The RECOVERY Trial, the world’s largest randomised trial of potential COVID-19 treatments, has found that a monoclonal antibody combination developed by US company Regeneron reduces deaths for hospitalised COVID-19 patients who have not mounted their own immune response.

NDM Researchers recognised in Queen’s Birthday Honours

The pioneering work of members of the University, including research into tackling the Coronavirus pandemic, has been recognised in The Queen's Birthday Honours List.