register interest

Dr Alex Bullock

Research Area: Protein Science and Structural Biology
Technology Exchange: Bioinformatics, Crystallography, Drug discovery, Mass spectrometry and Protein interaction
Scientific Themes: Protein Science & Structural Biology and Physiology, Cellular & Molecular Biology
Keywords: kinase, receptor, cytokine, ubiquitin, cancer and phosphorylation
Web Links:

Secreted growth hormones and cytokines regulate the key physiological processes of growth and differentiation as well as responses to injury and infection. They include some notable therapies such as growth hormone (GH), insulin and interferons. However, inappropriate growth signals can drive human cancer while excessive cytokine (interferon and interleukin) responses underlie autoimmune and inflammatory diseases such as rheumatoid arthritis, diabetes and asthma.

My group is interested in how these signals are regulated inside the cell by phosphorylation and uses the tools of structural biology. Classically, the receptor (RTK) and non-receptor (PTK) protein tyrosine kinases create docking sites for the recruitment of SH2 effector proteins (e.g. GRB2, STATs) regulated by the action of phosphatases (PTPs). Similarly, TGF-ß/BMP receptor serine kinases (RSK) recruit SMAD MH2 domains for the control of embryogenesis and stem cell development. More recently phosphorylation has been recognized as a control switch for protein degradation by E3 ubiquitin ligases.

As part of the structural genomics consortium (SGC) we are targeting the kinase receptors and their interaction with E3 ligases, with particular interest in their relevance for human disease. We recently solved several crystal structures of the TGF-ß/BMP receptor family which is under investigation in clinical trials for tumour angiogenesis, muscular dystrophy and multiple myeloma. Together with the group of Prof. Stefan Knapp we have also dentified anti-leukemic inhibitors of the PIM1 survival kinase that is known to be essential for v-Abl transformation.

Name Department Institution Country
Professor Nathanael S. Gray Dana Farber Cancer Institute Harvard Medical School United States
Paul Yu Harvard Medical School United States
Shawn Li University of Western Ontario Canada
Chris Jones Institute of Cancer Research United Kingdom
Petra Knaus Freie Universität Berlin Germany
Bagarova J, Vonner AJ, Armstrong KA, Börgermann J, Lai CSC, Deng DY, Beppu H, Alfano I, Filippakopoulos P, Morrell NW et al. 2017. Correction for Bagarova et al., "Constitutively Active ALK2 Receptor Mutants Require Type II Receptor Cooperation". Mol Cell Biol, 37 (19), pp. e00284-17-e00284-17. | Show Abstract | Read more

© 2017 American Society for Microbiology. Volume 33, no. 12, p. 2413-2424, 2013, https://doi.org/10.1128/MCB.01595-12. Page 2416, Fig. 1A: The sixth X ray was unintentionally duplicated from the first X ray during formatting. The correct X ray is shown below. This substitution does not impact the conclusions of the experiment or the validity of the study.

Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, Doutch J, Bullock AN. 2017. Structural Complexity in the KCTD Family of Cullin3-Dependent E3 Ubiquitin Ligases. Biochem J, | Show Abstract | Read more

Members of the potassium channel tetramerization domain (KCTD) family are soluble non-channel proteins that commonly function as Cullin3 (Cul3)-dependent E3 ligases. Solution studies of the N-terminal BTB domain have suggested that some KCTD family members may tetramerize similarly to the homologous tetramerization domain (T1) of the voltage-gated potassium (Kv) channels. However, available structures of KCTD1, KCTD5 and KCTD9 have demonstrated instead pentameric assemblies. To explore other phylogenetic clades within the KCTD family, we determined the crystal structures of the BTB domains of a further five human KCTD proteins revealing a rich variety of oligomerization architectures, including monomer (SHKBP1), a novel two-fold symmetric tetramer (KCTD10 and KCTD13), open pentamer (KCTD16) and closed pentamer (KCTD17). While these diverse geometries were confirmed by small-angle X-ray scattering (SAXS), only the pentameric forms were stable upon size-exclusion chromatography. With the exception of KCTD16, all proteins bound to Cul3 and were observed to reassemble in solution as 5:5 heterodecamers. SAXS data and structural modelling indicate that Cul3 may stabilize closed BTB pentamers by binding across their BTB-BTB interfaces. These extra interactions likely also allow KCTD proteins to bind Cul3 without the expected 3-box motif. Overall, these studies reveal the KCTD family BTB domain to be a highly versatile scaffold compatible with a range of oligomeric assemblies and geometries. This observed interface plasticity may support functional changes in regulation of this unusual E3 ligase family.

Williams E, Bullock AN. 2017. Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2. Bone, | Show Abstract | Read more

Individuals with the rare developmental disorder fibrodysplasia ossificans progressiva (FOP) experience disabling heterotopic ossification caused by a gain of function mutation in the intracellular region of the BMP type I receptor kinase ALK2, encoded by the gene ACVR1. Small molecule BMP type I receptor inhibitors that block this ossification in FOP mouse models have been derived from the pyrazolo[1,5-a]pyrimidine scaffold of dorsomorphin. While the first derivative LDN-193189 exhibited pan inhibition of BMP receptors, the more recent compound LDN-212854 has shown increased selectivity for ALK2. Here we solved the crystal structure of ALK2 in complex with LDN-212854 to define how its binding interactions compare to previously reported BMP and TGFβ receptor inhibitors. LDN-212854 bound to the kinase hinge region as a typical type I ATP-competitive inhibitor with a single hydrogen bond to ALK2 His286. Specificity arising from the 5-quinoline moiety was associated with a distinct pattern of water-mediated hydrogen bonds involving Lys235 and Glu248 in the inactive conformation favoured by ALK2. The structure of this complex provides a template for the design of future ALK2 inhibitors under development for the treatment of FOP and other related conditions of heterotopic ossification.

Wang Z, Zhang Y, Bartual SG, Luo J, Xu T, Du W, Xun Q, Tu Z, Brekken RA, Ren X et al. 2017. Tetrahydroisoquinoline-7-carboxamide Derivatives as New Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. ACS Med Chem Lett, 8 (3), pp. 327-332. | Show Abstract | Read more

Acute lung injury (ALI) is a deadly symptom for serious lung inflammation. Discoidin Domain Receptor 1 (DDR1) is a new potential target for anti-inflammatory drug discovery. A new selective tetrahydroisoquinoline-7-carboxamide based DDR1 inhibitor 7ae was discovered to tightly bind the DDR1 protein and potently inhibit its kinase function with a Kd value of 2.2 nM and an IC50 value of 6.6 nM, respectively. The compound dose-dependently inhibited lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) release in mouse primary peritoneal macrophages (MPMs). In addition, 7ae also exhibited promising in vivo anti-inflammatory effects in a LPS-induced mouse ALI model. To the best of our knowledge, this is the first "proof of concept" investigation on the potential application of a small molecule DDR1 inhibitor to treat ALI.

Dixon-Clarke SE, Shehata SN, Krojer T, Sharpe TD, von Delft F, Sakamoto K, Bullock AN. 2017. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Biochem J, 474 (5), pp. 699-713. | Show Abstract | Read more

CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts.

Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM et al. 2016. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol, 12 (10), pp. 876-884. | Show Abstract | Read more

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.

Chaikuad A, Bullock AN. 2016. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol, 8 (11), pp. a022111-a022111. | Show Abstract | Read more

Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.

Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, Zhang S, Mo C, Zhou Y, Xu Y et al. 2016. Structure-Based Design of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. J Med Chem, 59 (12), pp. 5911-5916. | Show Abstract | Read more

The structure-based design of 1, 2, 3, 4-tetrahydroisoquinoline derivatives as selective DDR1 inhibitors is reported. One of the representative compounds, 6j, binds to DDR1 with a Kd value of 4.7 nM and suppresses its kinase activity with an IC50 value of 9.4 nM, but it is significantly less potent for a panel of 400 nonmutated kinases. 6j also demonstrated reasonable pharmacokinetic properties and a promising oral therapeutic effect in a bleomycin-induced mouse pulmonary fibrosis model.

Delconte RB, Kolesnik TB, Dagley LF, Rautela J, Shi W, Putz EM, Stannard K, Zhang JG, Teh C, Firth M et al. 2016. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol, 17 (7), pp. 816-824. | Show Abstract | Read more

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.

Dixon-Clarke SE, Elkins JM, Cheng SW, Morin GB, Bullock AN. 2015. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Sci Rep, 5 (1), pp. 17122. | Show Abstract | Read more

Cyclin-dependent kinase 12 (CDK12) promotes transcriptional elongation by phosphorylation of the RNA polymerase II C-terminal domain (CTD). Structure-function studies show that this activity is dependent on a C-terminal kinase extension, as well as the binding of cyclin K (CycK). To better define these interactions we determined the crystal structure of the human CDK12/CycK complex with and without the kinase extension in the presence of AMP-PNP. The structures revealed novel features for a CDK, including a large β4-β5 loop insertion that contributes to the N-lobe interaction with the cyclin. We also observed two different conformations of the C-terminal kinase extension that effectively open and close the ATP pocket. Most notably, bound AMP-PNP was only observed when trapped in the closed state. Truncation of this C-terminal structure also diminished AMP-PNP binding, as well as the catalytic activity of the CDK12/CycK complex. Further kinetic measurements showed that the full length CDK12/CycK complex was significantly more active than the two crystallised constructs suggesting a critical role for additional domains. Overall, these results demonstrate the intrinsic flexibility of the C-terminal extension in CDK12 and highlight its importance for both ATP binding and kinase activity.

Bullock AN, Degterev A. 2015. Targeting RIPK1,2,3 to combat inflammation. Oncotarget, 6 (33), pp. 34057-34058. | Read more

Gregson CL, Wheeler L, Hardcastle SA, Appleton LH, Addison KA, Brugmans M, Clark GR, Ward KA, Paggiosi M, Stone M et al. 2016. Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases. J Bone Miner Res, 31 (3), pp. 640-649. | Show Abstract | Read more

High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion (∼3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance.

Canning P, Ruan Q, Schwerd T, Hrdinka M, Maki JL, Saleh D, Suebsuwong C, Ray S, Brennan PE, Cuny GD et al. 2015. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors. Chem Biol, 22 (9), pp. 1174-1184. | Show Abstract | Read more

RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers.

Canning P, Sorrell FJ, Bullock AN. 2015. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med, 88 (Pt B), pp. 101-107. | Show Abstract | Read more

Keap1 is a highly redox-sensitive member of the BTB-Kelch family that assembles with the Cul3 protein to form a Cullin-RING E3 ligase complex for the degradation of Nrf2. Oxidative stress disables Keap1, allowing Nrf2 protein levels to accumulate for the transactivation of critical stress response genes. Consequently, the Keap1-Nrf2 system is extensively pursued for the development of protein-protein interaction inhibitors that will stabilize Nrf2 for therapeutic effect in conditions of neurodegeneration, inflammation, and cancer. Here we review current progress toward the structure determination of Keap1 and its protein complexes with Cul3, Nrf2 substrate, and small-molecule antagonists. Together the available structures establish a rational three-dimensional model to explain the two-site binding of Nrf2 as well as its efficient ubiquitination.

Bravenboer N, Micha D, Triffit JT, Bullock AN, Ravazollo R, Bocciardi R, di Rocco M, Netelenbos JC, Ten Dijke P, Sánchez-Duffhues G et al. 2015. Clinical Utility Gene Card for: Fibrodysplasia ossificans progressiva. Eur J Hum Genet, 23 (10), pp. 1431-1431. | Read more

Kerr G, Sheldon H, Chaikuad A, Alfano I, von Delft F, Bullock AN, Harris AL. 2015. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis. Angiogenesis, 18 (2), pp. 209-217. | Show Abstract | Read more

Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

Gregory M, Yin M-X, McConville MJ, Williams E, Bullock AN, Conway SJ, Burgess AW, Catimel B, Holmes AB. 2015. Synthesis of Highly Water-Soluble Adamantyl Phosphoinositide Derivatives AUSTRALIAN JOURNAL OF CHEMISTRY, 68 (4), pp. 543-548. | Show Abstract | Read more

© 2015 CSIRO. Phosphatidylinositol phosphates are key regulators of cell signalling pathways and membrane trafficking in eukaryotic cells, and there is a need for new chemical probes to further understand how they interact with lipid-binding proteins. Here, the synthesis of phosphatidylinositol phosphate analogues containing adamantyl carboxylic ester groups, in place of the natural lipid side chains, is described. These derivatives are considerably more soluble in water than analogues containing other lipid side chains and do not form large aggregates such as liposomes or micelles. These adamantyl analogues bind to known phosphoinositide-binding proteins with similar affinities to native ligands and will facilitate future studies on the substrate specificities of these proteins involving cocrystallisation studies with proteins.

Kerr G, Sheldon H, Chaikuad A, Alfano I, von Delft F, Bullock AN, Harris AL. 2015. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis Angiogenesis, 18 (2), pp. 209-217. | Show Abstract | Read more

© 2015, The Author(s). Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

Horbelt D, Boergermann JH, Chaikuad A, Alfano I, Williams E, Lukonin I, Timmel T, Bullock AN, Knaus P. 2015. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation. J Biol Chem, 290 (6), pp. 3390-3404. | Show Abstract | Read more

GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.

Taylor KR, Vinci M, Bullock AN, Jones C. 2014. ACVR1 mutations in DIPG: lessons learned from FOP. Cancer Res, 74 (17), pp. 4565-4570. | Show Abstract | Read more

Whole-genome sequencing studies have recently identified a quarter of cases of the rare childhood brainstem tumor diffuse intrinsic pontine glioma to harbor somatic mutations in ACVR1. This gene encodes the type I bone morphogenic protein receptor ALK2, with the residues affected identical to those that, when mutated in the germline, give rise to the congenital malformation syndrome fibrodysplasia ossificans progressiva (FOP), resulting in the transformation of soft tissue into bone. This unexpected link points toward the importance of developmental biology processes in tumorigenesis and provides an extensive experience in mechanistic understanding and drug development hard-won by FOP researchers to pediatric neurooncology. Here, we review the literature in both fields and identify potential areas for collaboration and rapid advancement for patients of both diseases.

Mohedas AH, Wang Y, Sanvitale CE, Canning P, Choi S, Xing X, Bullock AN, Cuny GD, Yu PB. 2014. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants. J Med Chem, 57 (19), pp. 7900-7915. | Show Abstract | Read more

There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure-activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-β type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-β inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG.

Cited:

24

Scopus

Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. 2014. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors Journal of Molecular Biology, 426 (13), pp. 2457-2470. | Show Abstract | Read more

The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC 50 of 9 nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer. © 2014 The Authors. Published by Elsevier Ltd.

Cited:

123

Scopus

Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, Castel D, Grasso CS, Vinci M, Carvalho D et al. 2014. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma NATURE GENETICS, 46 (5), pp. 457-461. | Show Abstract | Read more

Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-Î 2 signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease. © 2014 Nature America, Inc. All rights reserved.

Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. 2014. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol, 426 (13), pp. 2457-2470. | Show Abstract | Read more

The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer.

Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. 2014. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem J, 460 (2), pp. 237-246. | Show Abstract | Read more

WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.

Kim HG, Tan L, Weisberg EL, Liu F, Canning P, Choi HG, Ezell S, Zhao Z, Wu H, Wang J et al. 2014. Correction to Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor. ACS Chem Biol, 9 (3), pp. 840. | Read more

Canning P, Bullock AN. 2014. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases. Biochem Soc Trans, 42 (1), pp. 103-107. | Show Abstract | Read more

E3 ubiquitin ligases that direct substrate proteins to the ubiquitin-proteasome system are promising, though largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin-RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent member is the BTB-BACK (BTB and C-terminal Kelch)-Kelch protein KEAP1 (Kelch-like ECH-associated protein 1), a master regulator of the oxidative stress response and a potential drug target for common conditions such as diabetes, Alzheimer's disease and Parkinson's disease. Structural characterization of BTB-Cul3 complexes has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin extension to a bihelical '3-box' at the C-terminus of the BTB domain. Improved understanding of the structure of these complexes should contribute significantly to the effort to develop novel therapeutics targeted to CRL3-regulated pathways.

Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V et al. 2013. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem, 288 (39), pp. 28304. | Read more

Muniz JRC, Guo K, Kershaw NJ, Ayinampudi V, Von Delft F, Babon JJ, Bullock AN. 2013. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases Journal of Molecular Biology, 425 (17), pp. 3166-3177. | Show Abstract | Read more

Multi-subunit Cullin-RING E3 ligases often use repeat domain prote ins as substrate-specific adaptors. Structures of these macromolecular assemblies are determined for the F-box-containing leucine-rich repeat and WD40 repeat families, but not for the suppressor of cytokine signaling (SOCS)-box-containing ankyrin repeat proteins (ASB1-18), which assemble with Elongins B and C and Cul5. We determined the crystal structures of the ternary complex of ASB9-Elongin B/C as well as the interacting N-terminal domain of Cul5 and used structural comparisons to establish a model for the complete Cul5-based E3 ligase. The structures reveal a distinct architecture of the ASB9 complex that positions the ankyrin domain coaxial to the SOCS box-Elongin B/C complex and perpendicular to other repeat protein complexes. This alternative architecture appears favorable to present the ankyrin domain substrate-binding site to the E2-ubiquitin, while also providing spacing suitable for bulky ASB9 substrates, such as the creatine kinases. The presented Cul5 structure also differs from previous models and deviates from other Cullins via a rigid-body rotation between Cullin repeats. This work highlights the adaptability of repeat domain proteins as scaffolds in substrate recognition and lays the foundation for future structure-function studies of this important E3 family. © 2013 The Authors.

Kim HG, Tan L, Weisberg EL, Liu F, Canning P, Choi HG, Ezell SA, Wu H, Zhao Z, Wang J et al. 2013. Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem Biol, 8 (10), pp. 2145-2150. | Show Abstract | Read more

The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the 'DFG-out' conformation and inhibits DDR1 autophosphorylation in cells at submicromolar concentrations with good selectivity as assessed against a panel of 451 kinases measured using the KinomeScan technology. We identified a mutation in the hinge region of DDR1, G707A, that confers >20-fold resistance to the ability of DDR1-IN-1 to inhibit DDR1 autophosphorylation and can be used to establish what pharmacology is DDR1-dependent. A combinatorial screen of DDR1-IN-1 with a library of annotated kinase inhibitors revealed that inhibitors of PI3K and mTOR such as GSK2126458 potentiate the antiproliferative activity of DDR1-IN-1 in colorectal cancer cell lines. DDR1-IN-1 provides a useful pharmacological probe for DDR1-dependent signal transduction.

Muniz JR, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. 2013. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. J Mol Biol, 425 (17), pp. 3166-3177. | Show Abstract | Read more

Multi-subunit Cullin-RING E3 ligases often use repeat domain proteins as substrate-specific adaptors. Structures of these macromolecular assemblies are determined for the F-box-containing leucine-rich repeat and WD40 repeat families, but not for the suppressor of cytokine signaling (SOCS)-box-containing ankyrin repeat proteins (ASB1-18), which assemble with Elongins B and C and Cul5. We determined the crystal structures of the ternary complex of ASB9-Elongin B/C as well as the interacting N-terminal domain of Cul5 and used structural comparisons to establish a model for the complete Cul5-based E3 ligase. The structures reveal a distinct architecture of the ASB9 complex that positions the ankyrin domain coaxial to the SOCS box-Elongin B/C complex and perpendicular to other repeat protein complexes. This alternative architecture appears favorable to present the ankyrin domain substrate-binding site to the E2-ubiquitin, while also providing spacing suitable for bulky ASB9 substrates, such as the creatine kinases. The presented Cul5 structure also differs from previous models and deviates from other Cullins via a rigid-body rotation between Cullin repeats. This work highlights the adaptability of repeat domain proteins as scaffolds in substrate recognition and lays the foundation for future structure-function studies of this important E3 family.

Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J et al. 2013. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A, 110 (24), pp. 9710-9715. | Show Abstract | Read more

ABCB10 is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria. In mammals ABCB10 is essential for erythropoiesis, and for protection of mitochondria against oxidative stress. ABCB10 is therefore a potential therapeutic target for diseases in which increased mitochondrial reactive oxygen species production and oxidative stress play a major role. The crystal structure of apo-ABCB10 shows a classic exporter fold ABC transporter structure, in an open-inwards conformation, ready to bind the substrate or nucleotide from the inner mitochondrial matrix or membrane. Unexpectedly, however, ABCB10 adopts an open-inwards conformation when complexed with nonhydrolysable ATP analogs, in contrast to other transporter structures which adopt an open-outwards conformation in complex with ATP. The three complexes of ABCB10/ATP analogs reported here showed varying degrees of opening of the transport substrate binding site, indicating that in this conformation there is some flexibility between the two halves of the protein. These structures suggest that the observed plasticity, together with a portal between two helices in the transmembrane region of ABCB10, assist transport substrate entry into the substrate binding cavity. These structures indicate that ABC transporters may exist in an open-inwards conformation when nucleotide is bound. We discuss ways in which this observation can be aligned with the current views on mechanisms of ABC transporters.

Bagarova J, Vonner AJ, Armstrong KA, Börgermann J, Lai CS, Deng DY, Beppu H, Alfano I, Filippakopoulos P, Morrell NW et al. 2013. Constitutively active ALK2 receptor mutants require type II receptor cooperation. Mol Cell Biol, 33 (12), pp. 2413-2424. | Show Abstract | Read more

Constitutively activating mutations in receptor kinases recruit downstream effector pathways independently of upstream signaling, with consequences ranging from developmental syndromes to cancer. Classic fibrodysplasia ossificans progressiva (FOP) is a congenital syndrome resulting from highly conserved activating mutations of the glycine-serine-rich (GS) regulatory domain of ACVR1, encoding bone morphogenetic protein (BMP) type I receptor ALK2, which lead to inappropriate signaling and heterotopic ossification of soft tissues. It is unclear if constitutively active mutant ALK2 receptors (caALK2) can function independently of signaling complexes with type II receptors and ligands. We found that ablation of BmpRII and ActRIIa abrogated BMP ligand-mediated and caALK2-mediated signaling and transcription in cells and disrupted caALK2-induced heterotopic ossification in mice. Signaling via GS domain ALK2 mutants could be restored by the expression of either BMP type II receptor. The contribution of BMP type II receptors was independent of their ligand-binding or kinase function but was dependent upon an intact cytoplasmic domain. These data demonstrate that GS domain ALK2 mutants act independently of upstream signaling but may require a nonenzymatic scaffolding function provided by type II receptors to form functional, apparently ligand-independent signaling complexes. These findings define the minimal requirements for signaling of GS domain ALK2 mutants, with implications for the therapeutic targeting of their activity in disease.

Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD, Yu PB. 2013. Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol, 8 (6), pp. 1291-1302. | Show Abstract | Read more

The bone morphogenetic protein (BMP) signaling pathway has essential functions in development, homeostasis, and the normal and pathophysiologic remodeling of tissues. Small molecule inhibitors of the BMP receptor kinase family have been useful for probing physiologic functions of BMP signaling in vitro and in vivo and may have roles in the treatment of BMP-mediated diseases. Here we describe the development of a selective and potent inhibitor of the BMP type I receptor kinases, LDN-212854, which in contrast to previously described BMP receptor kinase inhibitors exhibits nearly 4 orders of selectivity for BMP versus the closely related TGF-β and Activin type I receptors. In vitro, LDN-212854 exhibits some selectivity for ALK2 in preference to other BMP type I receptors, ALK1 and ALK3, which may permit the interrogation of ALK2-mediated signaling, transcriptional activity, and function. LDN-212854 potently inhibits heterotopic ossification in an inducible transgenic mutant ALK2 mouse model of fibrodysplasia ossificans progressiva. These findings represent a significant step toward developing selective inhibitors targeting individual members of the highly homologous BMP type I receptor family. Such inhibitors would provide greater resolution as probes of physiologic function and improved selectivity against therapeutic targets.

Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C et al. 2013. The structural basis of ZMPSTE24-dependent laminopathies. Science, 339 (6127), pp. 1604-1607. | Show Abstract | Read more

Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane α-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.

Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V et al. 2013. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem, 288 (11), pp. 7803-7814. | Show Abstract | Read more

Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein "3-box" motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.

Sanvitale CE, Kerr G, Chaikuad A, Ramel MC, Mohedas AH, Reichert S, Wang Y, Triffitt JT, Cuny GD, Yu PB et al. 2013. A new class of small molecule inhibitor of BMP signaling. PLoS One, 8 (4), pp. e62721. | Show Abstract | Read more

Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP) receptor kinase ALK2 (ACVR1) are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP). Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.

Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS et al. 2013. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One, 8 (8), pp. e70536. | Show Abstract | Read more

Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.

Cited:

35

Scopus

Quigley A, Dong YY, Pike ACW, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MSP, Edwards AM, Bountra C et al. 2013. The structural basis of ZMPSTE24-dependent laminopathies Science, 340 (6127), pp. 1604-1607. | Show Abstract | Read more

Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane α-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide - binding site and to the bottom of the chamber.

Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P, Bullock AN. 2012. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem, 287 (44), pp. 36990-36998. | Show Abstract | Read more

Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.

Canning P, von Delft F, Bullock AN. 2012. Structural basis for ASPP2 recognition by the tumor suppressor p73. J Mol Biol, 423 (4), pp. 515-527. | Show Abstract | Read more

Tumor suppressors p53, p63 and p73 comprise a family of stress-responsive transcription factors with distinct functions in development and tumor suppression. Most human cancers lose p53 function, yet all three proteins are capable of inducing apoptosis or cellular senescence. Mechanisms are therefore under investigation to activate p73-dependent apoptosis in p53-deficient cancer cells. Significantly, the DNA-binding domain (DBD) of p73 escapes viral oncoproteins and displays an enhanced thermal stability. To further understand the variant features of p73, we solved the high-resolution crystal structure of the p73 DBD as well as its complex with the ankyrin repeat and SH3 domains of the pro-apoptotic factor ASPP2. The p73 structure exhibits the same conserved architecture as p53 but displays a divergent L2 loop, a known site of protein-protein interaction. The loop in p73 is changed by a two-residue insertion that also induces repacking around the site of the p53 mutational hotspot R175. Importantly, the binding of ASPP2 is preserved by conformational changes in both the ankyrin repeat and SH3 domains. These results further highlight the structural variation that impacts p53 family interactions within the p53 interactome.

Adams CJ, Pike AC, Maniam S, Sharpe TD, Coutts AS, Knapp S, La Thangue NB, Bullock AN. 2012. The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure. Proc Natl Acad Sci U S A, 109 (10), pp. 3778-3783. | Show Abstract | Read more

Activation of p53 target genes for tumor suppression depends on the stress-specific regulation of transcriptional coactivator complexes. Strap (stress-responsive activator of p300) is activated upon DNA damage by ataxia telangiectasia mutated (ATM) and Chk2 kinases and is a key regulator of the p53 response. In addition to antagonizing Mdm2, Strap facilitates the recruitment of p53 coactivators, including JMY and p300. Strap is a predicted TPR-repeat protein, but shows only limited sequence identity with any protein of known structure. To address this and to elucidate the molecular mechanism of Strap activity we determined the crystal structure of the full-length protein at 2.05 Å resolution. The structure of Strap reveals an atypical six tetratricopeptide repeat (TPR) protein that also contains an unexpected oligonucleotide/oligosaccharide-binding (OB)-fold domain. This previously unseen domain organization provides an extended superhelical scaffold allowing for protein-protein as well as protein-DNA interaction. We show that both of the TPR and OB-fold domains localize to the chromatin of p53 target genes and exhibit intrinsic regulatory activity necessary for the Strap-dependent p53 response.

Canning P, Von Delft F, Bullock AN. 2012. Structural basis for ASPP2 recognition by the tumor suppressor p73 Journal of Molecular Biology, 423 (4), pp. 515-527. | Show Abstract | Read more

Tumor suppressors p53, p63 and p73 comprise a family of stress-responsive transcription factors with distinct functions in development and tumor suppression. Most human cancers lose p53 function, yet all three proteins are capable of inducing apoptosis or cellular senescence. Mechanisms are therefore under investigation to activate p73-dependent apoptosis in p53-deficient cancer cells. Significantly, the DNA-binding domain (DBD) of p73 escapes viral oncoproteins and displays an enhanced thermal stability. To further understand the variant features of p73, we solved the high-resolution crystal structure of the p73 DBD as well as its complex with the ankyrin repeat and SH3 domains of the pro-apoptotic factor ASPP2. The p73 structure exhibits the same conserved architecture as p53 but displays a divergent L2 loop, a known site of protein-protein interaction. The loop in p73 is changed by a two-residue insertion that also induces repacking around the site of the p53 mutational hotspot R175. Importantly, the binding of ASPP2 is preserved by conformational changes in both the ankyrin repeat and SH3 domains. These results further highlight the structural variation that impacts p53 family interactions within the p53 interactome. © 2012 Elsevier Ltd.

Cited:

54

Scopus

Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, Von Delft F, Knapp S, Knaus P, Bullock AN. 2012. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva Journal of Biological Chemistry, 287 (44), pp. 36990-36998. | Show Abstract | Read more

Background: Mutations in the ALK2 kinase cause extraskeletal bone formation. Results: We solved the structure of ALK2 in complex with the inhibitor FKBP12. Conclusion: Disease mutations break critical interactions that stabilize the inactive ALK2-FKBP12 complex leading to kinase activation. Significance: We offer an explanation for the effects of mutation and a structural template for the design of small molecule inhibitors. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Huber K, Brault L, Fedorov O, Gasser C, Filippakopoulos P, Bullock AN, Fabbro D, Trappe J, Schwaller J, Knapp S, Bracher F. 2012. 7,8-dichloro-1-oxo-β-carbolines as a versatile scaffold for the development of potent and selective kinase inhibitors with unusual binding modes. J Med Chem, 55 (1), pp. 403-413. | Show Abstract | Read more

Development of both potent and selective kinase inhibitors is a challenging task in modern drug discovery. The innate promiscuity of kinase inhibitors largely results from ATP-mimetic binding to the kinase hinge region. We present a novel class of substituted 7,8-dichloro-1-oxo-β-carbolines based on the distinct structural features of the alkaloid bauerine C whose kinase inhibitory activity does not rely on canonical ATP-mimetic hinge interactions. Intriguingly, cocrystal structures revealed an unexpected inverted binding mode and the presence of halogen bonds with kinase backbone residues. The compounds exhibit excellent selectivity over a comprehensive panel of human protein kinases while inhibiting selected kinases such as the oncogenic PIM1 at low nanomolar concentrations. Together, our biochemical and structural data suggest that this scaffold may serve as a valuable template for the design and development of specific inhibitors of various kinases including the PIM family of kinases, CLKs, DAPK3 (ZIPK), BMP2K (BIKE), and others.

Fedorov O, Huber K, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J et al. 2011. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol, 18 (1), pp. 67-76. | Show Abstract | Read more

There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19, a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix αC and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19 effectively suppressed phosphorylation of SR (serine/arginine) proteins in cells, consistent with its expected mechanism of action. Chemical inhibition of CLK1/CLK4 generated a unique pattern of splicing factor dephosphorylation and had at low nM concentration a profound effect on splicing of the two tissue factor isoforms flTF (full-length TF) and asHTF (alternatively spliced human TF).

Cited:

27

Scopus

Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA, Tobias JH, Triffitt JT. 2011. A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date Bone, 48 (3), pp. 654-658. | Show Abstract | Read more

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, autosomal dominant condition, classically characterised by heterotopic ossification beginning in childhood and congenital great toe malformations; occurring in response to a c.617 G > A ACVR1 mutation in the functionally important glycine/serine-rich domain of exon 6. Here we describe a novel c.587 T > C mutation in the glycine/serine-rich domain of ACVR1, associated with delayed onset of heterotopic ossification and an exceptionally mild clinical course. Absence of great toe malformations, the presence of early ossification of the cervical spine facets joints, plus mild bilateral camptodactyly of the 5th fingers, together with a novel ACVR1 mutation, are consistent with the 'FOP-variant' syndrome. The c.587 T > C mutation replaces a conserved leucine with proline at residue 196. Modelling of the mutant protein reveals a steric clash with the kinase domain that will weaken interactions with FKBP12 and induce exposure of the glycine/serine-rich repeat. The mutant receptor is predicted to be hypersensitive to ligand stimulation rather than being constitutively active, consistent with the mild clinical phenotype. This case extends our understanding of the 'FOP-variant' syndrome. © 2010.

Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA, Tobias JH, Triffitt JT. 2011. A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone, 48 (3), pp. 654-658. | Show Abstract | Read more

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, autosomal dominant condition, classically characterised by heterotopic ossification beginning in childhood and congenital great toe malformations; occurring in response to a c.617 G > A ACVR1 mutation in the functionally important glycine/serine-rich domain of exon 6. Here we describe a novel c.587 T > C mutation in the glycine/serine-rich domain of ACVR1, associated with delayed onset of heterotopic ossification and an exceptionally mild clinical course. Absence of great toe malformations, the presence of early ossification of the cervical spine facets joints, plus mild bilateral camptodactyly of the 5th fingers, together with a novel ACVR1 mutation, are consistent with the 'FOP-variant' syndrome. The c.587 T > C mutation replaces a conserved leucine with proline at residue 196. Modelling of the mutant protein reveals a steric clash with the kinase domain that will weaken interactions with FKBP12 and induce exposure of the glycine/serine-rich repeat. The mutant receptor is predicted to be hypersensitive to ligand stimulation rather than being constitutively active, consistent with the mild clinical phenotype. This case extends our understanding of the 'FOP-variant' syndrome.

Zadjali F, Pike AC, Vesterlund M, Sun J, Wu C, Li SS, Rönnstrand L, Knapp S, Bullock AN, Flores-Morales A. 2011. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem, 286 (1), pp. 480-490. | Show Abstract | Read more

The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor of cytokine signaling 6 (SOCS6) is a member of the SOCS family of E3 ubiquitin ligases that can interact with c-KIT and suppress c-KIT-dependent pathways. Here, we analyzed the molecular mechanisms that determine SOCS6 substrate recognition. Our results show that the SH2 domain of SOCS6 is essential for its interaction with c-KIT pY568. The 1.45-Å crystal structure of SOCS6 SH2 domain bound to the c-KIT substrate peptide (c-KIT residues 564-574) revealed a highly complementary and specific interface giving rise to a high affinity interaction (K(d) = 0.3 μm). Interestingly, the SH2 binding pocket extends to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6 as a feedback inhibitor of SCF-dependent signaling and provides molecular data to account for target specificity within the SOCS family of ubiquitin ligases.

Filippakopoulos P, Low A, Sharpe TD, Uppenberg J, Yao S, Kuang Z, Savitsky P, Lewis RS, Nicholson SE, Norton RS, Bullock AN. 2010. Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4. J Mol Biol, 401 (3), pp. 389-402. | Show Abstract | Read more

The mammalian SPRY domain- and SOCS box-containing proteins, SPSB1 to SPSB4, belong to the SOCS box family of E3 ubiquitin ligases. Substrate recognition sites for the SPRY domain are identified only for human Par-4 (ELNNNL) and for the Drosophila orthologue GUSTAVUS binding to the DEAD-box RNA helicase VASA (DINNNN). To further investigate this consensus motif, we determined the crystal structures of SPSB1, SPSB2, and SPSB4, as well as their binding modes and affinities for both Par-4 and VASA. Mutation of each of the three Asn residues in Par-4 abrogated binding to all three SPSB proteins, while changing EL to DI enhanced binding. By comparison to SPSB1 and SPSB4, the more divergent protein SPSB2 showed only weak binding to Par-4 and was hypersensitive to DI substitution. Par-4((59-77)) binding perturbed NMR resonances from a number of SPSB2 residues flanking the ELNNN binding site, including loop D, which binds the EL/DI sequence. Although interactions with the consensus peptide motif were conserved in all structures, flanking sites in SPSB2 were identified as sites of structural change. These structural changes limit high-affinity interactions for SPSB2 to aspartate-containing sequences, whereas SPSB1 and SPSB4 bind strongly to both Par-4 and VASA peptides.

López-Ramos M, Prudent R, Moucadel V, Sautel CF, Barette C, Lafanechère L, Mouawad L, Grierson D, Schmidt F, Florent JC et al. 2010. New potent dual inhibitors of CK2 and Pim kinases: discovery and structural insights. FASEB J, 24 (9), pp. 3171-3185. | Show Abstract | Read more

Protein kinase casein kinase 2 (CK2) is a serine/threonine kinase with evidence of implication in growth dysregulation and apoptosis resistance, making it a relevant target for cancer therapy. Several CK2 inhibitors have been developed showing variable efficiency, emphasizing the need to expand the chemical diversity of those inhibitors. We report the identification and characterization of 2,8-difurandicarboxylic acid derivatives as a new class of nanomolar ATP-competitive inhibitors. Selectivity profiling pointed out proviral insertion Moloney virus kinases (Pim kinases) as the only other kinases that are significantly inhibited. By combining structure-activity relationship analysis with structural determination, we were able to determine the binding mode of these inhibitors for both kinases and to explain their strong inhibitory potency. Essential chemical features necessary for activity on both kinases were then identified. The described compounds are not cell permeable: however, they could provide a lead for developing novel inhibitors usable also in vivo. Given the similar but not redundant pathophysiological functions of CK2 and Pim family members, such inhibitors would provide new attractive leads for targeted cancer therapy. This work highlights that 2 functionally related kinases from different kinome branches display exquisite sensitivity to a common inhibitor.

Coutandin D, Löhr F, Niesen FH, Ikeya T, Weber TA, Schäfer B, Zielonka EM, Bullock AN, Yang A, Güntert P et al. 2009. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death Differ, 16 (12), pp. 1582-1589. | Show Abstract | Read more

p73 and p63, the two ancestral members of the p53 family, are involved in neurogenesis, epithelial stem cell maintenance and quality control of female germ cells. The highly conserved oligomerization domain (OD) of tumor suppressor p53 is essential for its biological functions, and its structure was believed to be the prototype for all three proteins. However, we report that the ODs of p73 and p63 differ from the OD of p53 by containing an additional alpha-helix that is not present in the structure of the p53 OD. Deletion of this helix causes a dissociation of the OD into dimers; it also causes conformational instability and reduces the transcriptional activity of p73. Moreover, we show that ODs of p73 and p63 strongly interact and that a large number of different heterotetramers are supported by the additional helix. Detailed analysis shows that the heterotetramer consisting of two homodimers is thermodynamically more stable than the two homotetramers. No heterooligomerization between p53 and the p73/p63 subfamily was observed, supporting the notion of functional orthogonality within the p53 family.

Akué-Gédu R, Rossignol E, Azzaro S, Knapp S, Filippakopoulos P, Bullock AN, Bain J, Cohen P, Prudhomme M, Anizon F, Moreau P. 2009. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J Med Chem, 52 (20), pp. 6369-6381. | Show Abstract | Read more

Members of the Pim kinase family have been identified as promising targets for the development of antitumor agents. After a screening of pyrrolo[2,3-a]- and [3,2-a]carbazole derivatives toward 66 protein kinases, we identified pyrrolo[2,3-a]carbazole as a new scaffold to design potent Pim kinase inhibitors. In particular, compound 9 was identified as a low nM selective Pim inhibitor. Additionally, several pyrrolo[2,3-a]carbazole derivatives showed selectivity for Pim-1 and Pim-3 over Pim-2. In vitro antiproliferative activities of 9 and 28, the most potent Pim inhibitors identified, were evaluated toward three human solid cancer cell lines (PA1, PC3, and DU145) and one human fibroblast primary culture, revealing IC50 values in the micromolar range. Finally, the crystal structure of Pim-1 complexed with lead compound 9 was determined. The structure revealed a non-ATP mimetic binding mode with no hydrogen bonds formed with the kinase hinge region and explained the selectivity of pyrrolo[2,3-a]carbazole derivatives for Pim kinases.

Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, Pogacic V, Villa A, Ehret S, Berridge G et al. 2009. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med, 206 (9), pp. 1957-1970. | Show Abstract | Read more

FLT3-ITD-mediated leukemogenesis is associated with increased expression of oncogenic PIM serine/threonine kinases. To dissect their role in FLT3-ITD-mediated transformation, we performed bone marrow reconstitution assays. Unexpectedly, FLT3-ITD cells deficient for PIM1 failed to reconstitute lethally irradiated recipients, whereas lack of PIM2 induction did not interfere with FLT3-ITD-induced disease. PIM1-deficient bone marrow showed defects in homing and migration and displayed decreased surface CXCR4 expression and impaired CXCL12-CXCR4 signaling. Through small interfering RNA-mediated knockdown, chemical inhibition, expression of a dominant-negative mutant, and/or reexpression in knockout cells, we found PIM1 activity to be essential for proper CXCR4 surface expression and migration of cells toward a CXCL12 gradient. Purified PIM1 led to the phosphorylation of serine 339 in the CXCR4 intracellular domain in vitro, a site known to be essential for normal receptor recycling. In primary leukemic blasts, high levels of surface CXCR4 were associated with increased PIM1 expression, and this could be significantly reduced by a small molecule PIM inhibitor in some patients. Our data suggest that PIM1 activity is important for homing and migration of hematopoietic cells through modification of CXCR4. Because CXCR4 also regulates homing and maintenance of cancer stem cells, PIM1 inhibitors may exert their antitumor effects in part by interfering with interactions with the microenvironment.

Bullock AN, Das S, Debreczeni JE, Rellos P, Fedorov O, Niesen FH, Guo K, Papagrigoriou E, Amos AL, Cho S et al. 2009. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure, 17 (3), pp. 352-362. | Show Abstract | Read more

Splicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained. To understand functional differences between splicing factor targeting kinases, we determined crystal structures of CLK1 and CLK3. Intriguingly, in CLKs the SRPK1 docking site is blocked by insertion of a previously unseen helix alphaH. In addition, substrate docking grooves present in related mitogen activating protein kinases (MAPKs) are inaccessible due to a CLK specific beta7/8-hairpin insert. Thus, the unconstrained substrate interaction together with the determined active-site mediated substrate specificity allows CLKs to complete the functionally important hyperphosphorylation of splicing factors like ASF/SF2. In addition, despite high sequence conservation, we identified inhibitors with surprising isoform specificity for CLK1 over CLK3.

Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S. 2009. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. PLoS One, 4 (10), pp. e7112. | Show Abstract | Read more

BACKGROUND: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. PRINCIPAL FINDINGS: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. SIGNIFICANCE: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

Petrie KA, Lee WH, Bullock AN, Pointon JJ, Smith R, Russell RG, Brown MA, Wordsworth BP, Triffitt JT. 2009. Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients. PLoS One, 4 (3), pp. e5005. | Show Abstract | Read more

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, heritable condition typified by progression of extensive ossification within skeletal muscle, ligament and tendon together with defects in skeletal development. The condition is easily diagnosed by the presence of shortened great toes and there is severe advancement of disability with age. FOP has been shown to result from a point mutation (c.617G>A) in the ACVR1 gene in almost all patients reported. Very recently two other mutations have been described in three FOP patients. We present here evidence for two further unique mutations (c.605G>T and c.983G>A) in this gene in two FOP patients with some atypical digit abnormalities and other clinical features. The observation of disparate missense mutations mapped to the GS and kinase domains of the protein supports the disease model of mild kinase activation and provides a potential rationale for phenotypic variation.

Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN. 2008. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J, 27 (13), pp. 1907-1918. | Show Abstract | Read more

The positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T (CycT)) promotes mRNA transcriptional elongation through phosphorylation of elongation repressors and RNA polymerase II. To understand the regulation of a transcriptional CDK by its cognate cyclin, we have determined the structures of the CDK9/CycT1 and free cyclin T2. There are distinct differences between CDK9/CycT1 and the cell cycle CDK CDK2/CycA manifested by a relative rotation of 26 degrees of CycT1 with respect to the CDK, showing for the first time plasticity in CDK cyclin interactions. The CDK9/CycT1 interface is relatively sparse but retains some core CDK-cyclin interactions. The CycT1 C-terminal helix shows flexibility that may be important for the interaction of this region with HIV TAT and HEXIM. Flavopiridol, an anticancer drug in phase II clinical trials, binds to the ATP site of CDK9 inducing unanticipated structural changes that bury the inhibitor. CDK9 activity and recognition of regulatory proteins are governed by autophosphorylation. We show that CDK9/CycT1 autophosphorylates on Thr186 in the activation segment and three C-terminal phosphorylation sites. Autophosphorylation on all sites occurs in cis.

Fedorov O, Marsden B, Pogacic V, Rellos P, Müller S, Bullock AN, Schwaller J, Sundström M, Knapp S. 2007. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci U S A, 104 (51), pp. 20523-20528. | Show Abstract | Read more

Protein kinases play a pivotal role in cell signaling, and dysregulation of many kinases has been linked to disease development. A large number of kinase inhibitors are therefore currently under investigation in clinical trials, and so far seven inhibitors have been approved as anti-cancer drugs. In addition, kinase inhibitors are widely used as specific probes to study cell signaling, but systematic studies describing selectivity of these reagents across a panel of diverse kinases are largely lacking. Here we evaluated the specificity of 156 validated kinase inhibitors, including inhibitors used in clinical trials, against 60 human Ser/Thr kinases using a thermal stability shift assay. Our analysis revealed many unexpected cross-reactivities for inhibitors thought to be specific for certain targets. We also found that certain combinations of active-site residues in the ATP-binding site correlated with the detected ligand promiscuity and that some kinases are highly sensitive to inhibition using diverse chemotypes, suggesting them as preferred intervention points. Our results uncovered also inhibitor cross-reactivities that may lead to alternate clinical applications. For example, LY333'531, a PKCbeta inhibitor currently in phase III clinical trials, efficiently inhibited PIM1 kinase in our screen, a suggested target for treatment of leukemia. We determined the binding mode of this inhibitor by x-ray crystallography and in addition showed that LY333'531 induced cell death and significantly suppressed growth of leukemic cells from acute myeloid leukemia patients.

Bullock AN, Rodriguez MC, Debreczeni JE, Songyang Z, Knapp S. 2007. Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure, 15 (11), pp. 1493-1504. | Show Abstract | Read more

Tyrosine kinase signaling is tightly controlled by negative feedback inhibitors including suppressors of cytokine signaling (SOCS). SOCS assemble as SH2 domain substrate recognition modules in ElonginB/C-cullin ubiquitin ligases. In accordance, SOCS4 reduces STAT3 signaling from EGFR through increased receptor degradation. Variable C-termini in SOCS4-SOCS7 exclude these family members from a SOCS2-type domain arrangement in which a strictly conserved C terminus determines domain packing. The structure of the SOCS4-ElonginC-ElonginB complex reveals a distinct SOCS structural class. The N-terminal ESS helix functionally replaces the CIS/SOCS1-SOCS3 family C terminus in a distinct SH2-SOCS box interface that facilitates further interdomain packing between the extended N- and C-terminal regions characteristic for this subfamily. Using peptide arrays and calorimetry the STAT3 site in EGFR (pY(1092)) was identified as a high affinity SOCS4 substrate (K(D) = 0.5 microM) revealing a mechanism for EGFR degradation. SOCS4 also bound JAK2 and KIT with low micromolar affinity, whereas SOCS2 was specific for GH-receptor.

Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Gasser C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J. 2007. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res, 67 (14), pp. 6916-6924. | Show Abstract | Read more

Much attention has recently been focused on PIM kinases as potential targets for the treatment of hematopoietic malignancies and some solid cancers. Using protein stability shift assays, we identified a family of imidazo[1,2-b]pyridazines to specifically interact with and inhibit PIM kinases with low nanomolar potency. The high-resolution crystal structure of a PIM1 inhibitor complex revealed that imidazo[1,2-b]pyridazines surprisingly interact with the NH(2)-terminal lobe helix alphaC rather than with the kinase hinge region. Thus, the identified inhibitors are ATP competitive but not ATP mimetic compounds, explaining their enhanced selectivity with respect to conventional type I kinase inhibitors. One of the identified imidazo[1,2-b]pyridazines (K00135) was further tested in several hematopoietic cellular systems. First, K00135 dose-dependently impaired survival of murine Ba/F3 cells that have been rendered cytokine independent by overexpression of human PIMs. Second, K00135 impaired survival and clonogenic growth of a panel of human acute leukemia cells. Third, exposure of K00135 significantly suppressed in vitro growth of leukemic blasts from five acute myelogenous leukemia patients but not of normal umbilical cord blood mononuclear cells. In vitro kinase assays and immunoblotting using lysates from human MV4;11 leukemic cells showed inhibition of phosphorylation of known PIM downstream targets, such as BAD and eukaryotic translation initiation factor 4E-binding protein 1, by K00135. Taken together, we report a family of small molecules that selectively interact and block PIM kinases and could serve as a lead to develop new targeted antileukemic therapeutics.

Grosfeld A, Stolze IP, Cockman ME, Pugh CW, Edelmann M, Kessler B, Bullock AN, Ratcliffe PJ, Masson N. 2007. Interaction of hydroxylated collagen IV with the von hippel-lindau tumor suppressor. J Biol Chem, 282 (18), pp. 13264-13269. | Show Abstract | Read more

The von Hippel-Lindau tumor suppressor (pVHL) targets hydroxylated alpha-subunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated proteasomal destruction through direct interaction with the hydroxyproline binding pocket in its beta-domain. Although disruption of this process may contribute to VHL-associated tumor predisposition by up-regulation of HIF target genes, genetic and biochemical analyses support the existence of additional functions, including a role in the assembly of extracellular matrix. In an attempt to delineate these pathways, we searched for novel pVHL-binding proteins. Here we report a direct, hydroxylation-dependent interaction with alpha-chains of collagen IV. Interaction with pVHL was also observed with fibrillar collagen chains, but not the folded collagen triple helix. The interaction was suppressed by a wide range of tumor-associated mutations, including those that do not disturb the regulation of HIF, supporting a role in HIF-independent tumor suppressor functions.

Bullock AN, Debreczeni JE, Edwards AM, Sundström M, Knapp S. 2006. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc Natl Acad Sci U S A, 103 (20), pp. 7637-7642. | Show Abstract | Read more

Growth hormone (GH) signaling is tightly controlled by ubiquitination of GH receptors, phosphorylation levels, and accessibility of binding sites for downstream signaling partners. Members of the suppressors of cytokine signaling (SOCS) family function as key regulators at all levels of this pathway, and mouse knockout studies implicate SOCS2 as the primary suppressor. To elucidate the structural basis for SOCS2 function, we determined the 1.9-A crystal structure of the ternary complex of SOCS2 with elongin C and elongin B. The structure defines a prototypical SOCS box ubiquitin ligase with a Src homology 2 (SH2) domain as a substrate recognition motif. Overall, the SOCS box and SH2 domain show a conserved spatial domain arrangement with the BC box and substrate recognition domain of the von Hippel-Lindau (VHL) tumor suppressor protein, suggesting a common mechanism of ubiquitination in these cullin-dependent E3 ligases. The SOCS box binds elongin BC in a similar fashion to the VHL BC box and shows extended structural conservation with the F box of the Skp2 ubiquitin ligase. A previously unrecognized feature of the SOCS box is revealed with the burial of the C terminus, which packs together with the N-terminal extended SH2 subdomain to create a stable interface between the SOCS box and SH2 domain. This domain organization is conserved in SOCS1-3 and CIS1, which share a strictly conserved length of their C termini, but not in SOCS4, 5, and 7, which have extended C termini defining two distinct classes of inter- and intramolecular SOCS box interactions.

Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E. 2006. Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Angew Chem Int Ed Engl, 45 (10), pp. 1580-1585. | Show Abstract | Read more

(Figure Presented) Keeping in shape with half a sandwich: The structure of a picomolar organoruthenium inhibitor bound to the ATP-binding site of the protein kinase Pim-1 (see picture) demonstrates that the ruthenium center has solely a structural role in organizing the organic ligands in the three-dimensional receptor space, thus yielding a structure that is complementary in shape and functional group presentation to the active site of Pim-1. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.

Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE. 2005. Structure and substrate specificity of the Pim-1 kinase. J Biol Chem, 280 (50), pp. 41675-41682. | Show Abstract | Read more

The Pim kinases are a family of three vertebrate protein serine/threonine kinases (Pim-1, -2, and -3) belonging to the CAMK (calmodulin-dependent protein kinase-related) group. Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells, and they contribute to the progression of certain leukemias and solid tumors. A number of cytoplasmic and nuclear proteins are phosphorylated by Pim kinases and may act as their effectors in normal physiology and in disease. Recent crystallographic studies of Pim-1 have identified unique structural features but have not provided insight into how the kinase recognizes its target substrates. Here, we have conducted peptide library screens to exhaustively determine the sequence specificity of active site-mediated phosphorylation by Pim-1 and Pim-3. We have identified the major site of Pim-1 autophosphorylation and find surprisingly that it maps to a novel site that diverges from its consensus phosphorylation motif. We have solved the crystal structure of Pim-1 bound to a high affinity peptide substrate in complexes with either the ATP analog AMP-PNP or the bisindolylmaleimide kinase inhibitor 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide HCl. These structures reveal an unanticipated mode of recognition for basic residues upstream of the phosphorylation site, distinct from that of other kinases with similar substrate specificity. The structures provide a rationale for the unusually high affinity of Pim kinases for peptide substrates and suggest a general mode for substrate binding to members of the CAMK group.

Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S. 2005. Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem, 48 (24), pp. 7604-7614. | Show Abstract | Read more

The kinase PIM-1 plays a pivotal role in cytokine signaling and is implicated in the development of a number of tumors. The three-dimensional structure of PIM-1 is characterized by an unique hinge region which lacks a second hydrogen bond donor and makes it particularly important to determine how inhibitors bind to this kinase. We determined the structures of PIM-1 in complex with bisindolylmaleimide (BIM-1) and established the structure-activity relationship (SAR) for this inhibitor class. In addition, we screened a kinase targeted library and identified a number of high affinity inhibitors of PIM-1 such as imidazo[1,2-b]pyridazines, pyrazolo[1,5-a]pyrimidines, and members of the flavonoid family. In this paper we present an initial SAR of the identified scaffolds determined on the basis of a thermostability shift assay, calorimetric binding data, and biochemical assays which may find applications for the treatment of PIM-1 dependent cancer types.

Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D. 2004. Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol, 11 (4), pp. 371-379. | Show Abstract | Read more

We developed a 'computational second-site suppressor' strategy to redesign specificity at a protein-protein interface and applied it to create new specifically interacting DNase-inhibitor protein pairs. We demonstrate that the designed switch in specificity holds in in vitro binding and functional assays. We also show that the designed interfaces are specific in the natural functional context in living cells, and present the first high-resolution X-ray crystallographic analysis of a computer-redesigned functional protein-protein interface with altered specificity. The approach should be applicable to the design of interacting protein pairs with novel specificities for delineating and re-engineering protein interaction networks in living cells.

Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM et al. 2002. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem, 277 (29), pp. 26351-26355. | Show Abstract | Read more

Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha. Hydroxylation of an asparagine residue in the C-terminal transactivation domain (CAD) of HIF-alpha abrogates interaction with p300, preventing transcriptional activation. Yeast two-hybrid assays recently identified factor inhibiting HIF (FIH) as a protein that associates with the CAD region of HIF-alpha. Since FIH contains certain motifs present in iron- and 2-OG-dependent oxygenases we investigated whether FIH was the HIF asparaginyl hydroxylase. Assays using recombinant FIH and HIF-alpha fragments revealed that FIH is the enzyme that hydroxylates the CAD asparagine residue, that the activity is directly inhibited by cobalt(II) and limited by hypoxia, and that the oxygen in the alcohol of the hydroxyasparagine residue is directly derived from dioxygen. Sequence analyses involving FIH link the 2-OG oxygenases with members of the cupin superfamily, including Zn(II)-utilizing phosphomannose isomerase, revealing structural and evolutionary links between these metal-binding proteins that share common motifs.

Bullock AN, Fersht AR. 2001. Rescuing the function of mutant p53. Nat Rev Cancer, 1 (1), pp. 68-76. | Show Abstract | Read more

One protein--p53--plays nemesis to most cancers by condemning damaged cells to death or quarantining them for repair. But the activity of p53 relies on its intact native conformation, which can be lost following mutation of a single nucleotide. With thousands of such mutations identified in patients, how can a future cancer drug buttress this fragile protein structure and restore the cell's natural defence?

Bullock AN, Henckel J, Fersht AR. 2000. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene, 19 (10), pp. 1245-1256. | Show Abstract | Read more

The tumour suppressor p53 is mutated in half of all human cancers, most frequently with missense substitutions in its core domain. We present a new assessment of the mutation database based on quantitative folding and DNA-binding studies of the isolated core domain. Our data identify five distinct mutant classes that correlate with four well-defined regions of the core domain structure. On extrapolation to 37 degrees C the wild-type protein has a stability of 3.0 kcal/mol. This also emerges as an oncogenic threshold: all beta-sandwich mutants destabilized by this amount (50% denatured) are expected to promote cancer. Other weakly destabilizing mutations are restricted to loop 3 in the DNA-binding region. Drugs that stabilize mutant p53 folding have the potential to reactivate apoptotic signalling pathways in tumour cells either by transactivation-dependent or independent pathways. Using an affinity ligand as a proof of principle we have recovered the thermodynamic stability of the hotspot G245S. With reference states for the five mutant classes as a guide, future therapeutic strategies may similarly stabilize partially structured or binding states of mutant p53 that restore limited p53 pathways to tumour suppression.

Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor MR, Lane DP, Fersht AR. 1997. Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A, 94 (26), pp. 14338-14342. | Show Abstract | Read more

Some 50% of human cancers are associated with mutations in the core domain of the tumor suppressor p53. Many mutations are thought just to destabilize the protein. To assess this and the possibility of rescue, we have set up a system to analyze the stability of the core domain and its mutants. The use of differential scanning calorimetry or spectroscopy to measure its melting temperature leads to irreversible denaturation and aggregation and so is useful as only a qualitative guide to stability. There are excellent two-state denaturation curves on the addition of urea that may be analyzed quantitatively. One Zn2+ ion remains tightly bound in the holo-form of p53 throughout the denaturation curve. The stability of wild type is 6.0 kcal (1 kcal = 4.18 kJ)/mol at 25 degrees C and 9.8 kcal/mol at 10 degrees C. The oncogenic mutants R175H, C242S, R248Q, R249S, and R273H are destabilized by 3.0, 2.9, 1.9, 1.9, and 0.4 kcal/mol, respectively. Under certain denaturing conditions, the wild-type domain forms an aggregate that is relatively highly fluorescent at 340 nm on excitation at 280 nm. The destabilized mutants give this fluorescence under milder denaturation conditions.

Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM et al. 2016. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol, 12 (10), pp. 876-884. | Show Abstract | Read more

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.

Chaikuad A, Bullock AN. 2016. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol, 8 (11), pp. a022111-a022111. | Show Abstract | Read more

Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.

Delconte RB, Kolesnik TB, Dagley LF, Rautela J, Shi W, Putz EM, Stannard K, Zhang JG, Teh C, Firth M et al. 2016. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol, 17 (7), pp. 816-824. | Show Abstract | Read more

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.

Canning P, Ruan Q, Schwerd T, Hrdinka M, Maki JL, Saleh D, Suebsuwong C, Ray S, Brennan PE, Cuny GD et al. 2015. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors. Chem Biol, 22 (9), pp. 1174-1184. | Show Abstract | Read more

RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers.

Taylor KR, Vinci M, Bullock AN, Jones C. 2014. ACVR1 mutations in DIPG: lessons learned from FOP. Cancer Res, 74 (17), pp. 4565-4570. | Show Abstract | Read more

Whole-genome sequencing studies have recently identified a quarter of cases of the rare childhood brainstem tumor diffuse intrinsic pontine glioma to harbor somatic mutations in ACVR1. This gene encodes the type I bone morphogenic protein receptor ALK2, with the residues affected identical to those that, when mutated in the germline, give rise to the congenital malformation syndrome fibrodysplasia ossificans progressiva (FOP), resulting in the transformation of soft tissue into bone. This unexpected link points toward the importance of developmental biology processes in tumorigenesis and provides an extensive experience in mechanistic understanding and drug development hard-won by FOP researchers to pediatric neurooncology. Here, we review the literature in both fields and identify potential areas for collaboration and rapid advancement for patients of both diseases.

Cited:

123

Scopus

Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, Castel D, Grasso CS, Vinci M, Carvalho D et al. 2014. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma NATURE GENETICS, 46 (5), pp. 457-461. | Show Abstract | Read more

Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-Î 2 signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease. © 2014 Nature America, Inc. All rights reserved.

Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. 2014. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem J, 460 (2), pp. 237-246. | Show Abstract | Read more

WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.

Canning P, Bullock AN. 2014. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases. Biochem Soc Trans, 42 (1), pp. 103-107. | Show Abstract | Read more

E3 ubiquitin ligases that direct substrate proteins to the ubiquitin-proteasome system are promising, though largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin-RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent member is the BTB-BACK (BTB and C-terminal Kelch)-Kelch protein KEAP1 (Kelch-like ECH-associated protein 1), a master regulator of the oxidative stress response and a potential drug target for common conditions such as diabetes, Alzheimer's disease and Parkinson's disease. Structural characterization of BTB-Cul3 complexes has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin extension to a bihelical '3-box' at the C-terminus of the BTB domain. Improved understanding of the structure of these complexes should contribute significantly to the effort to develop novel therapeutics targeted to CRL3-regulated pathways.

Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V et al. 2013. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem, 288 (39), pp. 28304. | Read more

Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C et al. 2013. The structural basis of ZMPSTE24-dependent laminopathies. Science, 339 (6127), pp. 1604-1607. | Show Abstract | Read more

Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane α-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.

Adams CJ, Pike AC, Maniam S, Sharpe TD, Coutts AS, Knapp S, La Thangue NB, Bullock AN. 2012. The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure. Proc Natl Acad Sci U S A, 109 (10), pp. 3778-3783. | Show Abstract | Read more

Activation of p53 target genes for tumor suppression depends on the stress-specific regulation of transcriptional coactivator complexes. Strap (stress-responsive activator of p300) is activated upon DNA damage by ataxia telangiectasia mutated (ATM) and Chk2 kinases and is a key regulator of the p53 response. In addition to antagonizing Mdm2, Strap facilitates the recruitment of p53 coactivators, including JMY and p300. Strap is a predicted TPR-repeat protein, but shows only limited sequence identity with any protein of known structure. To address this and to elucidate the molecular mechanism of Strap activity we determined the crystal structure of the full-length protein at 2.05 Å resolution. The structure of Strap reveals an atypical six tetratricopeptide repeat (TPR) protein that also contains an unexpected oligonucleotide/oligosaccharide-binding (OB)-fold domain. This previously unseen domain organization provides an extended superhelical scaffold allowing for protein-protein as well as protein-DNA interaction. We show that both of the TPR and OB-fold domains localize to the chromatin of p53 target genes and exhibit intrinsic regulatory activity necessary for the Strap-dependent p53 response.

Cited:

54

Scopus

Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, Von Delft F, Knapp S, Knaus P, Bullock AN. 2012. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva Journal of Biological Chemistry, 287 (44), pp. 36990-36998. | Show Abstract | Read more

Background: Mutations in the ALK2 kinase cause extraskeletal bone formation. Results: We solved the structure of ALK2 in complex with the inhibitor FKBP12. Conclusion: Disease mutations break critical interactions that stabilize the inactive ALK2-FKBP12 complex leading to kinase activation. Significance: We offer an explanation for the effects of mutation and a structural template for the design of small molecule inhibitors. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

143

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk