register interest

Professor Jonathan M Grimes

Research Area: Protein Science and Structural Biology
Technology Exchange: Computational biology, Crystallography, Drug discovery, Mass spectrometry, Microscopy (EM) and Protein interaction
Scientific Themes: Protein Science & Structural Biology and Immunology & Infectious Disease
Keywords: X-ray crystallography, Virus Structure, RNA Replication, Immune Evasion and Viral Host Cell Interactions
Web Links:

Viruses are relatively simple biological systems and as such a structural analysis of viruses allows fundamental biological questions to be addressed. Examples include protein recognition events involved in macromolecular capsid assembly, genome replication and mRNA synthesis as well as evasion of the host cells immune system. I work on a number of viruses that target some of these key biological events ranging from viral capsids to individual viral proteins, using a variety of biophysical techniques, primarily crystallography
dsRNA viruses are attractive systems due to the constraints imposed on their biology. Because of the poisonous nature of their dsRNA genomes, the viral core containing the genome remains intact within the infected cell. The core is an efficient transcription machine which has all the required enzyme activities necessary to produce capped mRNA. Unravelling the action of these viral enzymes has remained a key focus, particularly the polymerase structures from these dsRNA viruses.
Another area of research involves a study of immunomodulators of vaccinia virus. Over half the genome of vaccinia virus is composed of non-essential genes for virus replication in cell culture. They code for proteins that effect virus virulance, host cell susceptibility or the host response to infection. We have demonstrated the potential of high-throughput structural methods to contribute in a timely way to functional analysis. Four novel structures have already been determined. Currently we have focused our energies on replicative enzymes of flaviviruses but are now targeting the more challenging polymerases of certain -ve ssRNA viruses.

Name Department Institution Country
Professor Ervin Fodor Dunn School of Pathology University of Oxford United Kingdom
Dr Etienne Decroly ARCHITECTURE ET FONCTION DES MACROMOLECULES BIOLOGIQUES CNRS & Aix Marseille Université France
Professor Juha T Huiskonen Structural Biology Oxford University, Oxford Particle Imaging Centre United Kingdom
Professor Herve Bourhy Institute Pasteur France
Dr Lidia Vasilieva Dept of Biochemistry University of Oxford United Kingdom
Robert Robinson Institute of Molecular and Cell Biology Singapore
Dr Bernadette van den Hoogen Erasmus MC Netherlands
Professor Dennis Bamford Institute of Biotechnology and Department of Biosciences University of Helsinki Finland
Dr Houssam Attoui Vector-borne Diseases Programme Institute of Animal Health United Kingdom
Professor Peter Mertens Jenner Institute Oxford University, The Pirbright Institute United Kingdom
Geoffrey Smith Imperial College, London United Kingdom
Juthathip Mongkolsapaya Imperial College, London United Kingdom
Alasdair Steven NIH United States
Professor Ian Tomlinson Wellcome Trust Centre for Human Genetics Oxford University, Henry Wellcome Building of Genomic Medicine United Kingdom
Renner M, Paesen GC, Grison CM, Granier S, Grimes JM, Leyrat C. 2017. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering. Sci Rep, 7 (1), pp. 14865. | Show Abstract | Read more

The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (Pcore) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of Pcore with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

Wittmann S, Renner M, Watts BR, Adams O, Huseyin M, Baejen C, El Omari K, Kilchert C, Heo D-H, Kecman T et al. 2017. The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Nat Commun, 8 pp. 14861. | Show Abstract | Read more

Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.

Singaravelu P, Lee WL, Wee S, Ghoshdastider U, Ding K, Gunaratne J, Grimes JM, Swaminathan K, Robinson RC. 2017. Yersinia effector protein (YopO)-mediated phosphorylation of host gelsolin causes calcium-independent activation leading to disruption of actin dynamics. J Biol Chem, 292 (19), pp. 8092-8100. | Show Abstract | Read more

Pathogenic Yersinia bacteria cause a range of human diseases. To modulate and evade host immune systems, these yersiniae inject effector proteins into host macrophages. One such protein, the serine/threonine kinase YopO (YpkA in Yersinia pestis), uses monomeric actin as bait to recruit and phosphorylate host actin polymerization-regulating proteins, including the actin-severing protein gelsolin, to disrupt actin filaments and thus impair phagocytosis. However, the YopO phosphorylation sites on gelsolin and the consequences of YopO-mediated phosphorylation on actin remodeling have yet to be established. Here we determined the effects of YopO-mediated phosphorylation on gelsolin and identified its phosphorylation sites by mass spectrometry. YopO phosphorylated gelsolin in the linker region between gelsolin homology domains G3 and G4, which, in the absence of calcium, are compacted but adopt an open conformation in the presence of calcium, enabling actin binding and severing. Using phosphomimetic and phosphodeletion gelsolin mutants, we found that YopO-mediated phosphorylation partially mimics calcium-dependent activation of gelsolin, potentially contributing to a reduction in filamentous actin and altered actin dynamics in phagocytic cells. In summary, this work represents the first report of the functional outcome of serine/threonine phosphorylation in gelsolin regulation and provides critical insight into how YopO disrupts normal gelsolin function to alter host actin dynamics and thus cripple phagocytosis.

Lee WL, Singaravelu P, Wee S, Xue B, Ang KC, Gunaratne J, Grimes JM, Swaminathan K, Robinson RC. 2017. Mechanisms of Yersinia YopO kinase substrate specificity. Sci Rep, 7 pp. 39998. | Show Abstract | Read more

Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO's substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis.

Ben Khalifa Y, Luco S, Besson B, Sonthonnax F, Archambaud M, Grimes JM, Larrous F, Bourhy H. 2016. The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity. Sci Rep, 6 (1), pp. 39420. | Show Abstract | Read more

The matrix (M) protein of wild isolates of rabies virus such as Tha (M-Tha) was previously shown to be able to interact with RelAp43, a protein of the NF-κB family, and to efficiently suppress NF-κB-dependent reporter gene expression, in contrast with the vaccine strain SAD. Here, we analyze the mechanisms involved in RelAp43-M protein interaction. We demonstrate that the central part of M-Tha, and the specific C-terminal region of RelAp43 are required for this interaction. Four differences in the corresponding amino acid sequences of the M-Tha and M-SAD are shown to be crucial for RelAp43 interaction and subsequent modulation of innate immune response. Furthermore, the capacity of M-Tha to interact with RelAp43 was shown to be crucial for the control of the expression of four genes (IFN, TNF, IL8 and CXCL2) during viral infection. These findings reveal that RelAp43 is a potent regulator of transcription of genes involved in innate immune response during rabies virus infection and that the M protein of wild isolates of rabies virus is a viral immune-modulatory factor playing an important role in this RelAp43-mediated host innate immunity response in contrast to M protein of vaccine strains, which have lost this property.

DiMattia MA, Watts NR, Cheng N, Huang R, Heymann JB, Grimes JM, Wingfield PT, Stuart DI, Steven AC. 2016. The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly. Structure, 24 (7), pp. 1068-1080. | Show Abstract | Read more

HIV-1 Rev protein mediates the nuclear export of viral RNA genomes. To do so, Rev oligomerizes cooperatively onto an RNA motif, the Rev response element (RRE), forming a complex that engages with the host nuclear export machinery. To better understand Rev oligomerization, we determined four crystal structures of Rev N-terminal domain dimers, which show that they can pivot about their dyad axis, giving crossing angles of 90° to 140°. In parallel, we performed cryoelectron microscopy of helical Rev filaments. Filaments vary from 11 to 15 nm in width, reflecting variations in dimer crossing angle. These structures contain additional density, indicating that C-terminal domains become partially ordered in the context of filaments. This conformational variability may be exploited in the assembly of RRE/Rev complexes. Our data also revealed a third interface between Revs, which offers an explanation for how the arrangement of Rev subunits adapts to the "A"-shaped architecture of the RRE in export-active complexes.

Renner M, Bertinelli M, Leyrat C, Paesen GC, Saraiva de Oliveira LF, Huiskonen JT, Grimes JM. 2016. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. Elife, 5 (FEBRUARY2016), pp. e12627. | Show Abstract | Read more

Non-segmented, (-)RNA viruses cause serious human diseases. Human metapneumovirus (HMPV), an emerging pathogen of this order of viruses (Mononegavirales) is one of the main causes of respiratory tract illness in children. To help elucidate the assembly mechanism of the nucleocapsid (the viral RNA genome packaged by the nucleoprotein N) we present crystallographic structures of HMPV N in its assembled RNA-bound state and in a monomeric state, bound to the polymerase cofactor P. Our structures reveal molecular details of how P inhibits the self-assembly of N and how N transitions between the RNA-free and RNA-bound conformational state. Notably, we observe a role for the C-terminal extension of N in directly preventing premature uptake of RNA by folding into the RNA-binding cleft. Our structures suggest a common mechanism of how the growth of the nucleocapsid is orchestrated, and highlight an interaction site representing an important target for antivirals.

Baskaran Y, Ang KC, Anekal PV, Chan WL, Grimes JM, Manser E, Robinson RC. 2015. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun, 6 pp. 8681. | Show Abstract | Read more

PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4-PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1-GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4.

Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, Vonrhein C, Bricogne G, Stuart DI, Grimes JM, Fodor E. 2015. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature, 527 (7576), pp. 114-117. | Show Abstract | Read more

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.

Paesen GC, Collet A, Sallamand C, Debart F, Vasseur J-J, Canard B, Decroly E, Grimes JM. 2015. X-ray structure and activities of an essential Mononegavirales L-protein domain. Nat Commun, 6 pp. 8749. | Show Abstract | Read more

The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site ((SAM)P) also contains a novel pocket ((NS)P) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the (SAM)P-adjoining site holding the nucleotides undergoing methylation ((SUB)P) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2'O and N7 positions, and also displays nucleotide triphosphatase activity.

Chumnarnsilpa S, Robinson RC, Grimes JM, Leyrat C. 2015. Calcium-controlled conformational choreography in the N-terminal half of adseverin. Nat Commun, 6 pp. 8254. | Show Abstract | Read more

Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

Ginn HM, Brewster AS, Hattne J, Evans G, Wagner A, Grimes JM, Sauter NK, Sutton G, Stuart DI. 2015. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallogr D Biol Crystallogr, 71 (Pt 6), pp. 1400-1410. | Show Abstract | Read more

Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R(split) value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.

Lee WL, Grimes JM, Robinson RC. 2015. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat Struct Mol Biol, 22 (3), pp. 248-255. | Show Abstract | Read more

Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

De Colibus L, Wang X, Tijsma A, Neyts J, Spyrou JAB, Ren J, Grimes JM, Puerstinger G, Leyssen P, Fry EE et al. 2015. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses. PLoS Pathog, 11 (10), pp. e1005165. | Show Abstract | Read more

The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity.

Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ, Winter G, Brewster AS, Hattne J, Wagner A et al. 2015. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun, 6 pp. 6435. | Show Abstract | Read more

The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and protein core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.

Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinski A, Jumnainsong A, Edwards C, Quyen NTH, Duangchinda T et al. 2015. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol, 16 (2), pp. 170-177. | Show Abstract | Read more

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.

Xue B, Leyrat C, Grimes JM, Robinson RC. 2014. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci U S A, 111 (43), pp. E4596-E4605. | Show Abstract | Read more

Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.

Ginn HM, Mostefaoui GK, Levik KE, Grimes JM, Walsh MA, Ashton AW, Stuart DI. 2014. SynchLink: an iOS app for ISPyB. J Appl Crystallogr, 47 (Pt 5), pp. 1781-1783. | Show Abstract | Read more

The macromolecular crystallography (MX) user experience at synchrotron radiation facilities continues to evolve, with the impact of developments in X-ray detectors, computer hardware and automation methods making it possible for complete data sets to be collected on timescales of tens of seconds. Data can be reduced in a couple of minutes and in favourable cases structures solved and refined shortly after. The information-rich database ISPyB, automatically populated by data acquisition software, data processing and structure solution pipelines at the Diamond Light Source beamlines, allows users to automatically track MX experiments in real time. In order to improve the synchrotron users' experience, efficient access to the data contained in ISPyB is now provided via an iOS 6.0+ app for iPhones and iPads. This provides users, both local and remote, with a succinct summary of data collection, visualization of diffraction images and crystals, and key metrics for data quality in real time.

El Omari K, Iourin O, Kadlec J, Fearn R, Hall DR, Harlos K, Grimes JM, Stuart DI. 2014. Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1. Acta Crystallogr D Biol Crystallogr, 70 (Pt 8), pp. 2197-2203. | Show Abstract | Read more

Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffracted very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.

Leyrat C, Paesen GC, Charleston J, Renner M, Grimes JM. 2014. Structural insights into the human metapneumovirus glycoprotein ectodomain. J Virol, 88 (19), pp. 11611-11616. | Show Abstract | Read more

Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G.

Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. 2014. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. Elife, 3 (3), pp. e02674. | Show Abstract | Read more

The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to 'gene end' RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses.DOI: http://dx.doi.org/10.7554/eLife.02674.001.

De Colibus L, Wang X, Spyrou JAB, Kelly J, Ren J, Grimes J, Puerstinger G, Stonehouse N, Walter TS, Hu Z et al. 2014. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat Struct Mol Biol, 21 (3), pp. 282-288. | Show Abstract | Read more

Enterovirus 71 (HEV71) epidemics in children and infants result mainly in mild symptoms; however, especially in the Asia-Pacific region, infection can be fatal. At present, no therapies are available. We have used structural analysis of the complete virus to guide the design of HEV71 inhibitors. Analysis of complexes with four 3-(4-pyridyl)-2-imidazolidinone derivatives with varying anti-HEV71 activities pinpointed key structure-activity correlates. We then identified additional potentially beneficial substitutions, developed methods to reliably triage compounds by quantum mechanics-enhanced ligand docking and synthesized two candidates. Structural analysis and in vitro assays confirmed the predicted binding modes and their ability to block viral infection. One ligand (with IC50 of 25 pM) is an order of magnitude more potent than the best previously reported inhibitor and is also more soluble. Our approach may be useful in the design of effective drugs for enterovirus infections.

El Omari K, Iourin O, Kadlec J, Sutton G, Harlos K, Grimes JM, Stuart DI. 2014. Unexpected structure for the N-terminal domain of hepatitis C virus envelope glycoprotein E1. Nat Commun, 5 pp. 4874. | Show Abstract | Read more

Hepatitis C virus (HCV) infection remains a major health problem worldwide. HCV entry into host cells and membrane fusion are achieved by two envelope glycoproteins, E1 and E2. We report here the 3.5-Å resolution crystal structure of the N-terminal domain of the HCV E1 ectodomain, which reveals a complex network of covalently linked intertwined homodimers that do not harbour the expected truncated class II fusion protein fold.

Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. 2014. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus. Structure, 22 (1), pp. 136-148. | Show Abstract | Read more

The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses.

El Omari K, Meier C, Kainov D, Sutton G, Grimes JM, Poranen MM, Bamford DH, Tuma R, Stuart DI, Mancini EJ. 2013. Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution. Nucleic Acids Res, 41 (20), pp. 9396-9410. | Show Abstract | Read more

Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.

Church DN, Briggs SEW, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV et al. 2013. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet, 22 (14), pp. 2820-2828. | Show Abstract | Read more

Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ε, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5-10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.

Rissanen I, Grimes JM, Pawlowski A, Mäntynen S, Harlos K, Bamford JKH, Stuart DI. 2013. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure, 21 (5), pp. 718-726. | Show Abstract | Read more

It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.

Bahar MW, Sarin LP, Graham SC, Pang J, Bamford DH, Stuart DI, Grimes JM. 2013. Structure of a VP1-VP3 complex suggests how birnaviruses package the VP1 polymerase. J Virol, 87 (6), pp. 3229-3236. | Show Abstract | Read more

Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.

Leyrat C, Renner M, Harlos K, Grimes JM. 2013. Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus. PLoS One, 8 (11), pp. e80371. | Show Abstract | Read more

Human metapneumovirus (HMPV) of the family Paramyxoviridae is a major cause of respiratory illness worldwide. Phosphoproteins (P) from Paramyxoviridae are essential co-factors of the viral RNA polymerase that form tetramers and possess long intrinsically disordered regions (IDRs). We located the central region of HMPV P (P(ced)) which is involved in tetramerization using disorder analysis and modeled its 3D structure ab initio using Rosetta fold-and-dock. We characterized the solution-structure of P(ced) using small angle X-ray scattering (SAXS) and carried out direct fitting to the scattering data to filter out incorrect models. Molecular dynamics simulations (MDS) and ensemble optimization were employed to select correct models and capture the dynamic character of P(ced). Our analysis revealed that oligomerization involves a compact central core located between residues 169-194 (P(core)), that is surrounded by flexible regions with α-helical propensity. We crystallized this fragment and solved its structure at 3.1 Å resolution by molecular replacement, using the folded core from our SAXS-validated ab initio model. The RMSD between modeled and experimental tetramers is as low as 0.9 Å, demonstrating the accuracy of the approach. A comparison of the structure of HMPV P to existing mononegavirales P(ced) structures suggests that P(ced) evolved under weak selective pressure. Finally, we discuss the advantages of using SAXS in combination with ab initio modeling and MDS to solve the structure of small, homo-oligomeric protein complexes.

El Omari K, Sutton G, Ravantti JJ, Zhang H, Walter TS, Grimes JM, Bamford DH, Stuart DI, Mancini EJ. 2013. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure, 21 (8), pp. 1384-1395. | Show Abstract | Read more

The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity.

Iourin O, Harlos K, El Omari K, Lu W, Kadlec J, Iqbal M, Meier C, Palmer A, Jones I, Thomas C et al. 2013. Expression, purification and crystallization of the ectodomain of the envelope glycoprotein E2 from Bovine viral diarrhoea virus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 69 (Pt 1), pp. 35-38. | Show Abstract | Read more

Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen which is closely related to Hepatitis C virus. Of the structural proteins, the envelope glycoprotein E2 of BVDV is the major antigen which induces neutralizing antibodies; thus, BVDV E2 is considered as an ideal target for use in subunit vaccines. Here, the expression, purification of wild-type and mutant forms of the ectodomain of BVDV E2 and subsequent crystallization and data collection of two crystal forms grown at low and neutral pH are reported. Native and multiple-wavelength anomalous dispersion (MAD) data sets have been collected and structure determination is in progress.

El Omari K, Iourin O, Harlos K, Grimes JM, Stuart DI. 2013. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep, 3 (1), pp. 30-35. | Show Abstract | Read more

Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

Palles C, Cazier J-B, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Salguero I et al. 2013. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet, 45 (2), pp. 136-144. | Show Abstract | Read more

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC, Stuart DI, Wingfield PT. 2013. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure, 21 (1), pp. 133-142. | Show Abstract | Read more

Chronic hepatitis B virus (HBV) infection afflicts millions worldwide with cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a nonparticulate variant of the protein (core antigen, HBcAg) that forms the building-blocks of capsids. HBeAg is not required for virion production, but is implicated in establishing immune tolerance and chronic infection. Here, we report the crystal structure of HBeAg, which clarifies how the short N-terminal propeptide of HBeAg induces a radically altered mode of dimerization relative to HBcAg (∼140° rotation), locked into place through formation of intramolecular disulfide bridges. This structural switch precludes capsid assembly and engenders a distinct antigenic repertoire, explaining why the two antigens are cross-reactive at the T cell level (through sequence identity) but not at the B cell level (through conformation). The structure offers insight into how HBeAg may establish immune tolerance for HBcAg while evading its robust immunogenicity.

Axford D, Owen RL, Aishima J, Foadi J, Morgan AW, Robinson JI, Nettleship JE, Owens RJ, Moraes I, Fry EE et al. 2012. In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr, 68 (Pt 5), pp. 592-600. | Show Abstract | Read more

Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

Sarin LP, Wright S, Chen Q, Degerth LH, Stuart DI, Grimes JM, Bamford DH, Poranen MM. 2012. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase. Virology, 432 (1), pp. 184-193. | Show Abstract | Read more

Double-stranded RNA viruses encode a single protein species containing RNA-dependent RNA polymerase (RdRP) motifs. This protein is responsible for RNA transcription and replication. The architecture of viral RdRPs resembles that of a cupped right hand with fingers, palm and thumb domains. Those using de novo initiation have a flexible structural elaboration that constitutes the priming platform. Here we investigate the properties of the C-terminal priming domain of bacteriophage ϕ6 to get insights into the role of an extended loop connecting this domain to the main body of the polymerase. Proteolyzed ϕ6 RdRP that possesses a nick in the hinge region of this loop was better suited for de novo initiation. The clipped C-terminus remained associated with the main body of the polymerase via the anchor helix. The structurally flexible hinge region appeared to be involved in the control of priming platform movement. Moreover, we detected abortive initiation products for a bacteriophage RdRP.

Rissanen I, Pawlowski A, Harlos K, Grimes JM, Stuart DI, Bamford JKH. 2012. Crystallization and preliminary crystallographic analysis of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. Acta Crystallogr Sect F Struct Biol Cryst Commun, 68 (Pt 5), pp. 580-583. | Show Abstract | Read more

Members of the diverse double-β-barrel lineage of viruses are identified by the conserved structure of their major coat protein. New members of this lineage have been discovered based on structural analysis and we are interested in identifying relatives that utilize unusual versions of the double-β-barrel fold. One candidate for such studies is P23-77, an icosahedral dsDNA bacteriophage that infects the extremophile Thermus thermophilus. P23-77 has two major coat proteins, namely VP16 and VP17, of a size consistent with a single-β-barrel core fold. These previously unstudied proteins have now been successfully expressed as recombinant proteins, purified and crystallized using hanging-drop and sitting-drop vapour-diffusion methods. Crystals of coat proteins VP16 and VP17 have been obtained as well as of a putative complex. In addition, virus-derived material has been crystallized. Diffraction data have been collected to beyond 3 Å resolution for five crystal types and structure determinations are in progress.

Abrescia NGA, Bamford DH, Grimes JM, Stuart DI. 2012. Structure unifies the viral universe. Annu Rev Biochem, 81 (1), pp. 795-822. | Show Abstract | Read more

Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.

Midgley CM, Flanagan A, Tran HB, Dejnirattisai W, Chawansuntati K, Jumnainsong A, Wongwiwat W, Duangchinda T, Mongkolsapaya J, Grimes JM, Screaton GR. 2012. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. J Immunol, 188 (10), pp. 4971-4979. | Show Abstract | Read more

Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries, underlying the need for a dengue vaccine. Although it is relatively easy to generate Ab responses to dengue virus, low avidity or low concentrations of Ab may enhance infection of FcR-bearing cells with clinical impact, posing a challenge to vaccine production. In this article, we report the characterization of a mAb, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. Because the 2H12-binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for Ab binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding Ab neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines.

Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM. 2012. Noncatalytic ions direct the RNA-dependent RNA polymerase of bacterial double-stranded RNA virus ϕ6 from de novo initiation to elongation. J Virol, 86 (5), pp. 2837-2849. | Show Abstract | Read more

RNA-dependent RNA polymerases (RdRps) are key to the replication of RNA viruses. A common divalent cation binding site, distinct from the positions of catalytic ions, has been identified in many viral RdRps. We have applied biochemical, biophysical, and structural approaches to show how the RdRp from bacteriophage ϕ6 uses the bound noncatalytic Mn(2+) to facilitate the displacement of the C-terminal domain during the transition from initiation to elongation. We find that this displacement releases the noncatalytic Mn(2+), which must be replaced for elongation to occur. By inserting a dysfunctional Mg(2+) at this site, we captured two nucleoside triphosphates within the active site in the absence of Watson-Crick base pairing with template and mapped movements of divalent cations during preinitiation. These structures refine the pathway from preinitiation through initiation to elongation for the RNA-dependent RNA polymerization reaction, explain the role of the noncatalytic divalent cation in 6 RdRp, and pinpoint the previously unresolved Mn(2+)-dependent step in replication.

Cited:

52

Scopus

Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwong P et al. 2011. An In-Depth Analysis of Original Antigenic Sin in Dengue Virus Infection (vol 85, pg 410, 2011) JOURNAL OF VIROLOGY, 85 (22), pp. 12100-12100. | Read more

Belhouchet M, Mohd Jaafar F, Firth AE, Grimes JM, Mertens PPC, Attoui H. 2011. Detection of a fourth orbivirus non-structural protein. PLoS One, 6 (10), pp. e25697. | Show Abstract | Read more

The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1-VP7) and 3 non-structural proteins (NS1-NS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4.

Bahar MW, Graham SC, Stuart DI, Grimes JM. 2011. Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure, 19 (7), pp. 1011-1020. | Show Abstract | Read more

The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises a double β barrel "jelly-roll" subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor.

Benfield CTO, Mansur DS, McCoy LE, Ferguson BJ, Bahar MW, Oldring AP, Grimes JM, Stuart DI, Graham SC, Smith GL. 2011. Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. J Biol Chem, 286 (23), pp. 20727-20735. | Show Abstract | Read more

The IκB kinase (IKK) complex regulates activation of NF-κB, a critical transcription factor in mediating inflammatory and immune responses. Not surprisingly, therefore, many viruses seek to inhibit NF-κB activation. The vaccinia virus B14 protein contributes to virus virulence by binding to the IKKβ subunit of the IKK complex and preventing NF-κB activation in response to pro-inflammatory stimuli. Previous crystallographic studies showed that the B14 protein has a Bcl-2-like fold and forms homodimers in the crystal. However, multi-angle light scattering indicated that B14 is in monomer-dimer equilibrium in solution. This transient self-association suggested that the hydrophobic dimerization interface of B14 might also mediate its interaction with IKKβ, and this was investigated by introducing amino acid substitutions on the dimer interface. One mutant (Y35E) was entirely monomeric but still co-immunoprecipitated with IKKβ and blocked both NF-κB nuclear translocation and NF-κB-dependent gene expression. Therefore, B14 homodimerization is nonessential for binding and inhibition of IKKβ. In contrast, a second monomeric mutant (F130K) neither bound IKKβ nor inhibited NF-κB-dependent gene expression, demonstrating that this residue is required for the B14-IKKβ interaction. Thus, the dimerization and IKKβ-binding interfaces overlap and lie on a surface used for protein-protein interactions in many viral and cellular Bcl-2-like proteins.

Graham SC, Sarin LP, Bahar MW, Myers RA, Stuart DI, Bamford DH, Grimes JM. 2011. The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. PLoS Pathog, 7 (6), pp. e1002085. | Show Abstract | Read more

The RNA-dependent RNA polymerase VP1 of infectious pancreatic necrosis virus (IPNV) is a single polypeptide responsible for both viral RNA transcription and genome replication. Sequence analysis identifies IPNV VP1 as having an unusual active site topology. We have purified, crystallized and solved the structure of IPNV VP1 to 2.3 Å resolution in its apo form and at 2.2 Å resolution bound to the catalytically-activating metal magnesium. We find that recombinantly-expressed VP1 is highly active for RNA transcription and replication, yielding both free and polymerase-attached RNA products. IPNV VP1 also possesses terminal (deoxy)nucleotide transferase, RNA-dependent DNA polymerase (reverse transcriptase) and template-independent self-guanylylation activity. The N-terminus of VP1 interacts with the active-site cleft and we show that the N-terminal serine residue is required for formation of covalent RNA:polymerase complexes, providing a mechanism for the genesis of viral genome:polymerase complexes observed in vivo.

Bahar MW, Graham SC, Chen RA-J, Cooray S, Smith GL, Stuart DI, Grimes JM. 2011. How vaccinia virus has evolved to subvert the host immune response. J Struct Biol, 175 (2), pp. 127-134. | Show Abstract | Read more

Viruses are obligate intracellular parasites and are some of the most rapidly evolving and diverse pathogens encountered by the host immune system. Large complicated viruses, such as poxviruses, have evolved a plethora of proteins to disrupt host immune signalling in their battle against immune surveillance. Recent X-ray crystallographic analysis of these viral immunomodulators has helped form an emerging picture of the molecular details of virus-host interactions. In this review we consider some of these immune evasion strategies as they apply to poxviruses, from a structural perspective, with specific examples from the European SPINE2-Complexes initiative. Structures of poxvirus immunomodulators reveal the capacity of viruses to mimic and compete against the host immune system, using a diverse range of structural folds that are unique or acquired from their hosts with both enhanced and unexpectedly divergent functions.

Abrescia NGA, Grimes JM, Oksanen HM, Bamford JKH, Bamford DH, Stuart DI. 2011. The use of low-resolution phasing followed by phase extension from 7.6 to 2.5 Å resolution with noncrystallographic symmetry to solve the structure of a bacteriophage capsid protein. Acta Crystallogr D Biol Crystallogr, 67 (Pt 3), pp. 228-232. | Show Abstract | Read more

P2, the major capsid protein of bacteriophage PM2, adopts the double β-barrel fold characteristic of the PRD1-adenoviral lineage. The 2.5 Å resolution X-ray data obtained by analysis of the two major lattices of a multiple crystal of P2 were phased by molecular replacement, using as a search model structure factors to 7.6 Å resolution obtained from electron density cut from the map of the entire PM2 virion. Phase extension to 2.5 Å resolution used solely sixfold cycling averaging and solvent flattening. This represents an atypical example of an oligomeric protein for which the structure has been determined at high resolution by bootstrapping from low-resolution initial phases.

Maluquer de Motes C, Cooray S, Ren H, Almeida GMF, McGourty K, Bahar MW, Stuart DI, Grimes JM, Graham SC, Smith GL. 2011. Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog, 7 (12), pp. e1002430. | Show Abstract | Read more

Vaccinia virus (VACV) protein N1 is an intracellular virulence factor and belongs to a family of VACV B-cell lymphoma (Bcl)-2-like proteins whose members inhibit apoptosis or activation of pro-inflammatory transcription factors, such as interferon (IFN) regulatory factor-3 (IRF-3) and nuclear factor-κB (NF-κB). Unusually, N1 inhibits both apoptosis and NF-κB activation. To understand how N1 exerts these different functions, we have mutated residues in the Bcl-2-like surface groove and at the interface used to form N1 homodimers. Mutagenesis of the surface groove abolished only the N1 anti-apoptotic activity and protein crystallography showed these mutants differed from wild-type N1 only at the site of mutation. Conversely, mutagenesis of the dimer interface converted N1 to a monomer and affected only inhibition of NF-κB activation. Collectively, these data show that N1 inhibits pro-inflammatory and pro-apoptotic signalling using independent surfaces of the protein. To determine the relative contribution of each activity to virus virulence, mutant N1 alleles were introduced into a VACV strain lacking N1 and the virulence of these viruses was analysed after intradermal and intranasal inoculation in mice. In both models, VACV containing a mutant N1 unable to inhibit apoptosis had similar virulence to wild-type virus, whereas VACV containing a mutant N1 impaired for NF-κB inhibition induced an attenuated infection similar to that of the N1-deleted virus. This indicates that anti-apoptotic activity of N1 does not drive virulence in these in vivo models, and highlights the importance of pro-inflammatory signalling in the immune response against viral infections.

Belhouchet M, Mohd Jaafar F, Tesh R, Grimes J, Maan S, Mertens PPC, Attoui H. 2010. Complete sequence of Great Island virus and comparison with the T2 and outer-capsid proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae). J Gen Virol, 91 (Pt 12), pp. 2985-2993. | Show Abstract | Read more

The complete nucleotide sequence of Great Island virus (GIV) genome was determined, along with genome segments (Seg) 1, 2 and 6 of Kemerovo (KEMV), Lipovnik (LIPV) and Tribec (TRBV) viruses. All four viruses, together with Broadhaven virus, are currently classified within the species Great Island virus and have been isolated from ticks, birds or humans. Sequence comparisons showed that Seg-4 of GIV encoded the outer-capsid protein responsible for cell attachment, although it was approximately half the length of its counterpart in the Culicoides or mosquito-transmitted orbiviruses. A second overlapping ORF (in the +2 reading frame) was identified in Seg-9 of GIV, encoding a putative dsRNA-binding protein. Phylogenetic analyses of the RNA-dependent RNA polymerase (Pol) and T2 protein amino acid sequences indicated that the tick-borne orbiviruses represent an ancestral group from which the mosquito-borne orbiviruses have evolved. This mirrors the evolutionary relationships between the arthropod vectors of these viruses, supporting a co-speciation hypothesis for these arboviruses and their arthropod-vectors. Phylogenetic analyses of the T2 proteins of KEMV, LIPV, TRBV and GIV (showing 82% amino acid identity) correlated with the early classification of Great Island viruses as two distinct serocomplexes (Great Island and Kemerovo serocomplexes). Amino acid identity levels in the VP1(Pol) and T2 proteins between the two serocomplexes were 73 and 82%, respectively, whilst those between previously characterized Orbivirus species are 53-73% and 26-83%, respectively. These data suggest that, despite limited genome segment reassortment between these two groups, their current classification within the same Orbivirus species could be re-evaluated.

Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwong P et al. 2011. An in-depth analysis of original antigenic sin in dengue virus infection. J Virol, 85 (1), pp. 410-421. | Show Abstract | Read more

The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.

Aalto AP, Poranen MM, Grimes JM, Stuart DI, Bamford DH. 2010. In vitro activities of the multifunctional RNA silencing polymerase QDE-1 of Neurospora crassa. J Biol Chem, 285 (38), pp. 29367-29374. | Show Abstract | Read more

QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.

Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA et al. 2010. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res, 87 (2), pp. 125-148. | Show Abstract | Read more

Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.

Delmas O, Assenberg R, Grimes JM, Bourhy H. 2010. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae. RNA Biol, 7 (3), pp. 322-327. | Show Abstract | Read more

The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

Stahl SJ, Watts NR, Rader C, DiMattia MA, Mage RG, Palmer I, Kaufman JD, Grimes JM, Stuart DI, Steven AC, Wingfield PT. 2010. Generation and characterization of a chimeric rabbit/human Fab for co-crystallization of HIV-1 Rev. J Mol Biol, 397 (3), pp. 697-708. | Show Abstract | Read more

Rev is a key regulatory protein of human immunodeficiency virus type 1. Its function is to bind to viral transcripts and effect export from the nucleus of unspliced mRNA, thereby allowing the synthesis of structural proteins. Despite its evident importance, the structure of Rev has remained unknown, primarily because Rev's proclivity for polymerization and aggregation is an impediment to crystallization. Monoclonal antibody antigen-binding domains (Fabs) have proven useful for the co-crystallization of other refractory proteins. In the present study, a chimeric rabbit/human anti-Rev Fab was selected by phage display, expressed in a bacterial secretion system, and purified from the media. The Fab readily solubilized polymeric Rev. The resulting Fab/Rev complex was purified by metal ion affinity chromatography and characterized by analytical ultracentrifugation, which demonstrated monodispersity and indicated a 1:1 molar stoichiometry. The Fab binds with very high affinity, as determined by surface plasmon resonance, to a conformational epitope in the N-terminal half of Rev. The complex forms crystals suitable for structure determination. The ability to serve as a crystallization aid is a new application of broad utility for chimeric rabbit/human Fab. The corresponding single-chain antibody (scFv) was also prepared, offering the potential of intracellular antibody therapeutics against human immunodeficiency virus type 1.

DiMattia MA, Watts NR, Stahl SJ, Rader C, Wingfield PT, Stuart DI, Steven AC, Grimes JM. 2010. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. Proc Natl Acad Sci U S A, 107 (13), pp. 5810-5814. | Show Abstract | Read more

HIV-1 Rev is a small regulatory protein that mediates the nuclear export of viral mRNAs, an essential step in the HIV replication cycle. In this process Rev oligomerizes in association with a highly structured RNA motif, the Rev response element. Crystallographic studies of Rev have been hampered by the protein's tendency to aggregate, but Rev has now been found to form a stable soluble equimolar complex with a specifically engineered monoclonal Fab fragment. We have determined the structure of this complex at 3.2 A resolution. It reveals a molecular dimer of Rev, bound on either side by a Fab, where the ordered portion of each Rev monomer (residues 9-65) contains two coplanar alpha-helices arranged in hairpin fashion. Subunits dimerize through overlapping of the hairpin prongs. Mating of hydrophobic patches on the outer surface of the dimer is likely to promote higher order interactions, suggesting a model for Rev oligomerization onto the viral RNA.

Assenberg R, Delmas O, Morin B, Graham SC, De Lamballerie X, Laubert C, Coutard B, Grimes JM, Neyts J, Owens RJ et al. 2010. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Res, 87 (2), pp. 149-161. | Show Abstract | Read more

Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.

Assenberg R, Delmas O, Ren J, Vidalain P-O, Verma A, Larrous F, Graham SC, Tangy F, Grimes JM, Bourhy H. 2010. Structure of the nucleoprotein binding domain of Mokola virus phosphoprotein. J Virol, 84 (2), pp. 1089-1096. | Show Abstract | Read more

Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae.

Assenberg R, Mastrangelo E, Walter TS, Verma A, Milani M, Owens RJ, Stuart DI, Grimes JM, Mancini EJ. 2009. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J Virol, 83 (24), pp. 12895-12906. | Show Abstract | Read more

The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

Bowden TA, Crispin M, Graham SC, Harvey DJ, Grimes JM, Jones EY, Stuart DI. 2009. Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol, 83 (16), pp. 8259-8265. | Show Abstract | Read more

New World arenaviruses, which cause severe hemorrhagic fever, rely upon their envelope glycoproteins for attachment and fusion into their host cell. Here we present the crystal structure of the Machupo virus GP1 attachment glycoprotein, which is responsible for high-affinity binding at the cell surface to the transferrin receptor. This first structure of an arenavirus glycoprotein shows that GP1 consists of a novel alpha/beta fold. This provides a blueprint of the New World arenavirus attachment glycoproteins and reveals a new architecture of viral attachment, using a protein fold of unknown origins.

Sarin LP, Poranen MM, Lehti NM, Ravantti JJ, Koivunen MRL, Aalto AP, van Dijk AA, Stuart DI, Grimes JM, Bamford DH. 2009. Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex. Nucleic Acids Res, 37 (4), pp. 1182-1192. | Show Abstract | Read more

The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3' terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage phi 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi 6 RdRP can be greatly enhanced.

Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI. 2008. Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol, 82 (23), pp. 11628-11636. | Show Abstract | Read more

Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-A resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.

Graham SC, Assenberg R, Delmas O, Verma A, Gholami A, Talbi C, Owens RJ, Stuart DI, Grimes JM, Bourhy H. 2008. Rhabdovirus matrix protein structures reveal a novel mode of self-association. PLoS Pathog, 4 (12), pp. e1000251. | Show Abstract | Read more

The matrix (M) proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus) and from Lagos bat virus (genus: Lyssavirus), revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

Poranen MM, Salgado PS, Koivunen MRL, Wright S, Bamford DH, Stuart DI, Grimes JM. 2008. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase. Nucleic Acids Res, 36 (20), pp. 6633-6644. | Show Abstract | Read more

The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.

Abrescia NGA, Grimes JM, Kivelä HM, Assenberg R, Sutton GC, Butcher SJ, Bamford JKH, Bamford DH, Stuart DI. 2008. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol Cell, 31 (5), pp. 749-761. | Show Abstract | Read more

Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane proteins, constitutes a rare visualization of an in vivo membrane. The viral membrane proteins P3 and P6 are organized into a lattice, suggesting a possible assembly pathway to produce the mature virus.

Graham SC, Bahar MW, Cooray S, Chen RA-J, Whalen DM, Abrescia NGA, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM. 2008. Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog, 4 (8), pp. e1000128. | Show Abstract | Read more

Vaccinia virus (VACV), the prototype poxvirus, encodes numerous proteins that modulate the host response to infection. Two such proteins, B14 and A52, act inside infected cells to inhibit activation of NF-kappaB, thereby blocking the production of pro-inflammatory cytokines. We have solved the crystal structures of A52 and B14 at 1.9 A and 2.7 A resolution, respectively. Strikingly, both these proteins adopt a Bcl-2-like fold despite sharing no significant sequence similarity with other viral or cellular Bcl-2-like proteins. Unlike cellular and viral Bcl-2-like proteins described previously, A52 and B14 lack a surface groove for binding BH3 peptides from pro-apoptotic Bcl-2-like proteins and they do not modulate apoptosis. Structure-based phylogenetic analysis of 32 cellular and viral Bcl-2-like protein structures reveals that A52 and B14 are more closely related to each other and to VACV N1 and myxoma virus M11 than they are to other viral or cellular Bcl-2-like proteins. This suggests that a progenitor poxvirus acquired a gene encoding a Bcl-2-like protein and, over the course of evolution, gene duplication events have allowed the virus to exploit this Bcl-2 scaffold for interfering with distinct host signalling pathways.

Bowden TA, Aricescu AR, Gilbert RJC, Grimes JM, Jones EY, Stuart DI. 2008. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol, 15 (6), pp. 567-572. | Show Abstract | Read more

Nipah and Hendra viruses are emergent paramyxoviruses, causing disease characterized by rapid onset and high mortality rates, resulting in their classification as Biosafety Level 4 pathogens. Their attachment glycoproteins are essential for the recognition of the cell-surface receptors ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3). Here we report crystal structures of both Nipah and Hendra attachment glycoproteins in complex with human EFNB2. In contrast to previously solved paramyxovirus attachment complexes, which are mediated by sialic acid interactions, the Nipah and Hendra complexes are maintained by an extensive protein-protein interface, including a crucial phenylalanine side chain on EFNB2 that fits snugly into a hydrophobic pocket on the viral protein. By analogy with the development of antivirals against sialic acid binding viruses, these results provide a structural template to target antiviral inhibition of protein-protein interactions.

Assenberg R, Delmas O, Graham SC, Verma A, Berrow N, Stuart DI, Owens RJ, Bourhy H, Grimes JM. 2008. Expression, purification and crystallization of a lyssavirus matrix (M) protein. Acta Crystallogr Sect F Struct Biol Cryst Commun, 64 (Pt 4), pp. 258-262. | Show Abstract | Read more

The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 A resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6(1)22 or P6(5)22, with unit-cell parameters a = b = 56.9-57.2, c = 187.9-188.6 A, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

Coutard B, Gorbalenya AE, Snijder EJ, Leontovich AM, Poupon A, De Lamballerie X, Charrel R, Gould EA, Gunther S, Norder H et al. 2008. The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res, 78 (1), pp. 37-46. | Show Abstract | Read more

Life-threatening RNA viruses emerge regularly, and often in an unpredictable manner. Yet, the very few drugs available against known RNA viruses have sometimes required decades of research for development. Can we generate preparedness for outbreaks of the, as yet, unknown viruses? The VIZIER (VIral enZymes InvolvEd in Replication) (http://www.vizier-europe.org/) project has been set-up to develop the scientific foundations for countering this challenge to society. VIZIER studies the most conserved viral enzymes (that of the replication machinery, or replicases) that constitute attractive targets for drug-design. The aim of VIZIER is to determine as many replicase crystal structures as possible from a carefully selected list of viruses in order to comprehensively cover the diversity of the RNA virus universe, and generate critical knowledge that could be efficiently utilized to jump-start research on any emerging RNA virus. VIZIER is a multidisciplinary project involving (i) bioinformatics to define functional domains, (ii) viral genomics to increase the number of characterized viral genomes and prepare defined targets, (iii) proteomics to express, purify, and characterize targets, (iv) structural biology to solve their crystal structures, and (v) pre-lead discovery to propose active scaffolds of antiviral molecules.

Kainov DE, Mancini EJ, Telenius J, Lísal J, Grimes JM, Bamford DH, Stuart DI, Tuma R. 2008. Structural basis of mechanochemical coupling in a hexameric molecular motor. J Biol Chem, 283 (6), pp. 3607-3617. | Show Abstract | Read more

The P4 protein of bacteriophage phi12 is a hexameric molecular motor closely related to superfamily 4 helicases. P4 converts chemical energy from ATP hydrolysis into mechanical work, to translocate single-stranded RNA into a viral capsid. The molecular basis of mechanochemical coupling, i.e. how small approximately 1 A changes in the ATP-binding site are amplified into nanometer scale motion along the nucleic acid, is not understood at the atomic level. Here we study in atomic detail the mechanochemical coupling using structural and biochemical analyses of P4 mutants. We show that a conserved region, consisting of superfamily 4 helicase motifs H3 and H4 and loop L2, constitutes the moving lever of the motor. The lever tip encompasses an RNA-binding site that moves along the mechanical reaction coordinate. The lever is flanked by gamma-phosphate sensors (Asn-234 and Ser-252) that report the nucleotide state of neighboring subunits and control the lever position. Insertion of an arginine finger (Arg-279) into the neighboring catalytic site is concomitant with lever movement and commences ATP hydrolysis. This ensures cooperative sequential hydrolysis that is tightly coupled to mechanical motion. Given the structural conservation, the mutated residues may play similar roles in other hexameric helicases and related molecular motors.

Kivelä HM, Abrescia NGA, Bamford JKH, Grimes JM, Stuart DI, Bamford DH. 2008. Selenomethionine labeling of large biological macromolecular complexes: probing the structure of marine bacterial virus PM2. J Struct Biol, 161 (2), pp. 204-210. | Show Abstract | Read more

There is a need for improved tools for labeling protein species within large macromolecular assemblies. Here we describe a method for the efficient selenomethionine labeling of the membrane-containing bacterial virus PM2 for structural studies. By examining potential host cells a strain was found which was auxotrophic for methionine, and by performing a multiparameter search of conditions it was possible to derive a robust protocol which simultaneously minimized the toxic effects of the selenomethionine, so that a reasonable virus yield was maintained, whilst still achieving essentially complete labeling. This has allowed us to fingerprint the protein constituents of the virus in a relatively low resolution electron density map. Such a technique can be adapted to other macromolecule complexes studied by X-ray crystallography.

Bahar MW, Kenyon JC, Putz MM, Abrescia NGA, Pease JE, Wise EL, Stuart DI, Smith GL, Grimes JM. 2008. Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog, 4 (1), pp. e5. | Show Abstract | Read more

The vaccinia virus (VACV) A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI), and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM) interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM) and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM) chemokine-chemokine receptor interactions.

Walter TS, Mancini EJ, Kadlec J, Graham SC, Assenberg R, Ren J, Sainsbury S, Owens RJ, Stuart DI, Grimes JM, Harlos K. 2008. Semi-automated microseeding of nanolitre crystallization experiments. Acta Crystallogr Sect F Struct Biol Cryst Commun, 64 (Pt 1), pp. 14-18. | Show Abstract | Read more

A simple semi-automated microseeding procedure for nanolitre crystallization experiments is described. Firstly, a microseed stock solution is made from microcrystals using a Teflon bead. A dilution series of this microseed stock is then prepared and dispensed as 100 nl droplets into 96-well crystallization plates, facilitating the incorporation of seeding into high-throughput crystallization pipelines. This basic microseeding procedure has been modified to include additive-screening and cross-seeding methods. Five examples in which these techniques have been used successfully are described.

Mancini EJ, Assenberg R, Verma A, Walter TS, Tuma R, Grimes JM, Owens RJ, Stuart DI. 2007. Structure of the Murray Valley encephalitis virus RNA helicase at 1.9 Angstrom resolution. Protein Sci, 16 (10), pp. 2294-2300. | Show Abstract | Read more

Murray Valley encephalitis virus (MVEV), a mosquito-borne flavivirus endemic to Australia, is closely related to Japanese encephalitis virus and West Nile virus. Nonstructural protein 3 (NS3) is a multifunctional enzyme with serine protease and DEXH/D-box helicase domains, whose activity is central to flavivirus replication and is therefore a possible target for anti-flaviviral compounds. Cloning, purification, and crystal structure determination to 1.9 Angstrom resolution of the NS3 helicase of MVEV and characterization of its enzymatic activity is reported. Comparison with the structures of helicases from related viruses supports a possible mechanism of ATP hydrolysis-driven strand separation.

Graham SC, Bahar MW, Abrescia NGA, Smith GL, Stuart DI, Grimes JM. 2007. Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol, 372 (3), pp. 660-671. | Show Abstract | Read more

Vaccinia virus (VACV), the smallpox vaccine, encodes many proteins that subvert the host immune response. One of these, cytokine response modifier E (CrmE), is secreted by infected cells and protects these cells from apoptotic challenge by tumour necrosis factor alpha (TNFalpha). We have expressed recombinant CrmE from VACV strain Lister in Escherichia coli, shown that the purified protein is monomeric in solution and competent to bind TNFalpha, and solved the structure to 2.0 A resolution. This is the first structure of a virus-encoded tumour necrosis factor receptor (TNFR). CrmE shares significant sequence similarity with mammalian type 2 TNF receptors (TNFSFR1B, p75; TNFR type 2). The structure confirms that CrmE adopts the canonical TNFR fold but only one of the two "ligand-binding" loops of TNFRSF1A is conserved in CrmE, suggesting a mechanism for the higher affinity of poxvirus TNFRs for TNFalpha over lymphotoxin-alpha. The roles of dimerisation and pre-ligand-assembly domains (PLADs) in poxvirus and mammalian TNFR activity are discussed.

Assenberg R, Ren J, Verma A, Walter TS, Alderton D, Hurrelbrink RJ, Fuller SD, Bressanelli S, Owens RJ, Stuart DI, Grimes JM. 2007. Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. J Gen Virol, 88 (Pt 8), pp. 2228-2236. | Show Abstract | Read more

We have determined the high resolution crystal structure of the methyltransferase domain of the NS5 polypeptide from the Murray Valley encephalitis virus. This domain is unusual in having both the N7 and 2'-O methyltransferase activity required for Cap 1 synthesis. We have also determined structures for complexes of this domain with nucleotides and cap analogues providing information on cap binding, based on which we suggest a model of how the sequential methylation of the N7 and 2'-O groups of the cap may be coordinated.

Cooray S, Bahar MW, Abrescia NGA, McVey CE, Bartlett NW, Chen RA-J, Stuart DI, Grimes JM, Smith GL. 2007. Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol, 88 (Pt 6), pp. 1656-1666. | Show Abstract | Read more

Vaccinia virus (VACV) encodes many immunomodulatory proteins, including inhibitors of apoptosis and modulators of innate immune signalling. VACV protein N1 is an intracellular homodimer that contributes to virus virulence and was reported to inhibit nuclear factor (NF)-kappaB signalling. However, analysis of NF-kappaB signalling in cells infected with recombinant viruses with or without the N1L gene showed no difference in NF-kappaB-dependent gene expression. Given that N1 promotes virus virulence, other possible functions of N1 were investigated and this revealed that N1 is an inhibitor of apoptosis in cells transfected with the N1L gene and in the context of VACV infection. In support of this finding virally expressed N1 co-precipitated with endogenous pro-apoptotic Bcl-2 proteins Bid, Bad and Bax as well as with Bad and Bax expressed by transfection. In addition, the crystal structure of N1 was solved to 2.9 A resolution (0.29 nm). Remarkably, although N1 shows no sequence similarity to cellular proteins, its three-dimensional structure closely resembles Bcl-x(L) and other members of the Bcl-2 protein family. The structure also reveals that N1 has a constitutively open surface groove similar to the grooves of other anti-apoptotic Bcl-2 proteins, which bind the BH3 motifs of pro-apoptotic Bcl-2 family members. Molecular modelling of BH3 peptides into the N1 surface groove, together with analysis of their physico-chemical properties, suggests a mechanism for the specificity of peptide recognition. This study illustrates the importance of the evolutionary conservation of structure, rather than sequence, in protein function and reveals a novel anti-apoptotic protein from orthopoxviruses.

Sutton G, Grimes JM, Stuart DI, Roy P. 2007. Bluetongue virus VP4 is an RNA-capping assembly line. Nat Struct Mol Biol, 14 (5), pp. 449-451. | Show Abstract | Read more

Eukaryotic organisms cap the 5' ends of their messenger RNAs by a series of four chemical reactions. Some viruses achieve this using a single molecule; the crystal structure of such an enzyme from bluetongue virus reveals an elongated modular architecture that provides a scaffold for an assemblage of active sites, two contributed by a domain of novel structure.

Fogg MJ, Alzari P, Bahar M, Bertini I, Betton J-M, Burmeister WP, Cambillau C, Canard B, Carrondo MA, Coll M et al. 2006. Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens (vol 62, pg 1196, 2006) ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 62 (12), pp. 1571-1571. | Read more

Salgado PS, Koivunen MRL, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. 2006. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol, 4 (12), pp. e434. | Show Abstract | Read more

RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-A resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world.

Walter TS, Meier C, Assenberg R, Au K-F, Ren J, Verma A, Nettleship JE, Owens RJ, Stuart DI, Grimes JM. 2006. Lysine methylation as a routine rescue strategy for protein crystallization. Structure, 14 (11), pp. 1617-1622. | Show Abstract | Read more

Crystallization remains a critical step in X-ray structure determination. Because it is not generally possible to rationally predict crystallization conditions, commercial screens have been developed which sample a wide range of crystallization space. While this approach has proved successful in many cases, a significant number of proteins fail to crystallize despite being soluble and monodispersed. It is established that chemical modification can facilitate the crystallization of otherwise intractable proteins. Here we describe a method for the reductive methylation of lysine residues which is simple, inexpensive, and efficient, and report on its application to ten proteins. We describe the effect of methylation on the physico-chemical properties of these proteins, and show that it led to diffraction-quality crystals from four proteins and structures for three that had hitherto proved refractory to crystallization. The method is suited to both low- and high-throughput laboratories.

Fogg MJ, Alzari P, Bahar M, Bertini I, Betton JM, Burmeister WP, Cambillau C, Canard B, Corrondo MA, Coll M et al. 2006. Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens. Acta Crystallogr D Biol Crystallogr, 62 (Pt 10), pp. 1196-1207. | Show Abstract | Read more

The Structural Proteomics In Europe (SPINE) programme is aimed at the development and implementation of high-throughput technologies for the efficient structure determination of proteins of biomedical importance, such as those of bacterial and viral pathogens linked to human health. Despite the challenging nature of some of these targets, 175 novel pathogen protein structures (approximately 220 including complexes) have been determined to date. Here the impact of several technologies on the structural determination of proteins from human pathogens is illustrated with selected examples, including the parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens.

Meier C, Aricescu AR, Assenberg R, Aplin RT, Gilbert RJC, Grimes JM, Stuart DI. 2006. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure, 14 (7), pp. 1157-1165. | Show Abstract | Read more

To achieve the greatest output from their limited genomes, viruses frequently make use of alternative open reading frames, in which translation is initiated from a start codon within an existing gene and, being out of frame, gives rise to a distinct protein product. These alternative protein products are, as yet, poorly characterized structurally. Here we report the crystal structure of ORF-9b, an alternative open reading frame within the nucleocapsid (N) gene from the SARS coronavirus. The protein has a novel fold, a dimeric tent-like beta structure with an amphipathic surface, and a central hydrophobic cavity that binds lipid molecules. This cavity is likely to be involved in membrane attachment and, in mammalian cells, ORF-9b associates with intracellular vesicles, consistent with a role in the assembly of the virion. Analysis of ORF-9b and other overlapping genes suggests that they provide snapshots of the early evolution of novel protein folds.

Cited:

34

Scopus

Salgado PS, Koivunen MRL, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. 2006. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS biology, 4 (12), | Show Abstract | Read more

RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-A resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world.

Fogg MJ, Alzari P, Bahar M, Bertini I, Betton JM, Burmeister WP, Cambillau C, Canard B, Carrondo MA, Coll M et al. 2006. Erratum: Application of the use of high-throughput technologies to the determination of protein structures of bacterial and viral pathogens (Acta Crystallographica Section D: Biological Crystallography (2006) D62 (1196-1207)) Acta Crystallographica Section D: Biological Crystallography, 62 (12), pp. 1571. | Read more

Stuart DI, Grimes JM. 2006. Structural studies on orbivirus proteins and particles. Curr Top Microbiol Immunol, 309 pp. 221-244. | Show Abstract

X-ray and electron microscopy analysis of Bluetongue virus (BTV), the type species of the Orbivirus genus within the family Reoviridae, have revealed various aspects of the organisation and structure of the proteins that form the viral capsid. Orbiviruses have a segmented dsRNA genome, which imposes constraints on their structure and life cycle. The atomic structure of the BTV core particle, the key viral component which transcribes the viral mRNA within the cell cytoplasm, revealed the architecture and assembly of the major core proteins VP7 and VP3. In addition, these studies formed the basis for a plausible model for the organisation of the dsRNA viral genome and the arrangement of the viral transcriptase complex (composed of the RNA-dependent RNA polymerase, the viral capping enzyme and RNA helicase) that resides within the core particle. Electron cryo-microscopy of the viral particle has shown how the two viral proteins VP2 and VP5 are arranged to form the outer capsid, with distinct packing arrangements between them and the core protein VP7. By comparison of the outer capsid proteins of orbiviruses with those of other nonturreted members of the family Reoviridae, we are able to propose a more detailed model of these structures and possible mechanisms for cell entry. Further structural results are also discussed including the atomic structure of an N-terminal domain of nonstructural protein NS2, a protein involved in virus genome assembly and morphogenesis.

Bamford DH, Grimes JM, Stuart DI. 2005. What does structure tell us about virus evolution? Curr Opin Struct Biol, 15 (6), pp. 655-663. | Show Abstract | Read more

Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. The organization and origins of this enormous virosphere are profound open questions in biology. It has generally been considered that viruses infecting evolutionally widely separated organisms (e.g. bacteria and humans) are also distinct. However, recent research contradicts this picture. Structural analyses of virion architecture and coat protein topology have revealed unexpected similarities, not visible in sequence comparisons, suggesting a common origin for viruses that infect hosts residing in different domains of life (bacteria, archaea and eukarya).

Anduleit K, Sutton G, Diprose JM, Mertens PPC, Grimes JM, Stuart DI. 2005. Crystal lattice as biological phenotype for insect viruses. Protein Sci, 14 (10), pp. 2741-2743. | Show Abstract | Read more

Many insect viruses survive for long periods by occlusion within robust crystalline polyhedra composed primarily of a single polyhedrin protein. We show that two different virus families form polyhedra which, despite lack of sequence similarity in the virally encoded polyhedrin protein, have identical cell constants and a body-centered cubic lattice. It is almost inconceivable that this could have arisen by chance, suggesting that the crystal lattice has been preserved because it is particularly well-suited to its function of packaging and protecting viruses.

Meier C, Mancini EJ, Bamford DH, Walsh MA, Stuart DI, Grimes JM. 2005. Overcoming the false-minima problem in direct methods: structure determination of the packaging enzyme P4 from bacteriophage phi13. Acta Crystallogr D Biol Crystallogr, 61 (Pt 9), pp. 1238-1244. | Show Abstract | Read more

The problems encountered during the phasing and structure determination of the packaging enzyme P4 from bacteriophage phi13 using the anomalous signal from selenium in a single-wavelength anomalous dispersion experiment (SAD) are described. The oligomeric state of P4 in the virus is a hexamer (with sixfold rotational symmetry) and it crystallizes in space group C2, with four hexamers in the crystallographic asymmetric unit. Current state-of-the-art ab initio phasing software yielded solutions consisting of 96 atoms arranged as sixfold symmetric clusters of Se atoms. However, although these solutions showed high correlation coefficients indicative that the substructure had been solved, the resulting phases produced uninterpretable electron-density maps. Only after further analysis were correct solutions found (also of 96 atoms), leading to the eventual identification of the positions of 120 Se atoms. Here, it is demonstrated how the difficulties in finding a correct phase solution arise from an intricate false-minima problem.

Abrescia NGA, Kivelä HM, Grimes JM, Bamford JKH, Bamford DH, Stuart DI. 2005. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2. Acta Crystallogr Sect F Struct Biol Cryst Commun, 61 (Pt 8), pp. 762-765. | Show Abstract | Read more

PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2(1)2(1)2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 A. The crystals diffract to 4 A resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

Walter TS, Diprose JM, Mayo CJ, Siebold C, Pickford MG, Carter L, Sutton GC, Berrow NS, Brown J, Berry IM et al. 2005. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr D Biol Crystallogr, 61 (Pt 6), pp. 651-657. | Show Abstract | Read more

Crystallization trials at the Division of Structural Biology in Oxford are now almost exclusively carried out using a high-throughput workflow implemented in the Oxford Protein Production Facility. Initial crystallization screening is based on nanolitre-scale sitting-drop vapour-diffusion experiments (typically 100 nl of protein plus 100 nl of reservoir solution per droplet) which use standard crystallization screening kits and 96-well crystallization plates. For 294 K crystallization trials the barcoded crystallization plates are entered into an automated storage system with a fully integrated imaging system. These plates are imaged in accordance with a pre-programmed schedule and the resulting digital data for each droplet are harvested into a laboratory information-management system (LIMS), scored by crystal recognition software and displayed for user analysis via a web-based interface. Currently, storage for trials at 277 K is not automated and for imaging the crystallization plates are fed by hand into an imaging system from which the data enter the LIMS. The workflow includes two procedures for nanolitre-scale optimization of crystallization conditions: (i) a protocol for variation of pH, reservoir dilution and protein:reservoir ratio and (ii) an additive screen. Experience based on 592 crystallization projects is reported.

Laurila MRL, Salgado PS, Stuart DI, Grimes JM, Bamford DH. 2005. Back-priming mode of phi6 RNA-dependent RNA polymerase. J Gen Virol, 86 (Pt 2), pp. 521-526. | Show Abstract | Read more

The RNA-dependent RNA polymerase of the double-stranded RNA bacteriophage phi6 is capable of primer-independent initiation, as are many RNA polymerases. The structure of this polymerase revealed an initiation platform, composed of a loop in the C-terminal domain (QYKW, aa 629-632), that was essential for de novo initiation. A similar element has been identified in hepatitis C virus RNA-dependent RNA polymerase. Biochemical studies have addressed the role of this platform, revealing that a mutant version can utilize a back-priming initiation mechanism, where the 3' terminus of the template adopts a hairpin-like conformation. Here, the mechanism of back-primed initiation is studied further by biochemical and structural methods.

Mohd Jaafar F, Attoui H, Bahar MW, Siebold C, Sutton G, Mertens PPC, De Micco P, Stuart DI, Grimes JM, De Lamballerie X. 2005. The structure and function of the outer coat protein VP9 of Banna virus. Structure, 13 (1), pp. 17-28. | Show Abstract | Read more

Banna virus (BAV: genus Seadornavirus, family Reoviridae) has a double-shelled morphology similar to rotavirus and bluetongue virus. The structure of BAV outer-capsid protein VP9 was determined by X-ray crystallography at 2.6 A resolution, revealing a trimeric molecule, held together by an N-terminal helical bundle, reminiscent of coiled-coil structures found in fusion-active proteins such as HIV gp41. The major domain of VP9 contains stacked beta sheets with marked structural similarities to the receptor binding protein VP8 of rotavirus. Anti-VP9 antibodies neutralize viral infectivity, and, remarkably, pretreatment of cells with trimeric VP9 increased viral infectivity, indicating that VP9 is involved in virus attachment to cell surface and subsequent internalization. Sequence similarities were also detected between BAV VP10 and VP5 portion of rotavirus VP4, suggesting that the receptor binding and internalization apparatus, which is a single gene product activated by proteoloysis in rotavirus, is the product of two separate genome segments in BAV.

Salgado PS, Walsh MA, Laurila MRL, Stuart DI, Grimes JM. 2005. Going soft and SAD with manganese. Acta Crystallogr D Biol Crystallogr, 61 (Pt 1), pp. 108-111. | Show Abstract | Read more

SAD phasing has been revisited recently, with experiments being carried out using previously unconventional sources of anomalous signal, particularly lighter atoms and softer X-rays. A case study is reported using the 75 kDa RNA-dependent RNA polymerase of the bacteriophase phi6, which binds a Mn atom and crystallizes with three molecules in the asymmetric unit. X-ray diffraction data were collected at a wavelength of 1.89 A and although the calculated anomalous signal from the three Mn atoms was only 1.2%, SHELXD and SOLVE were able to locate these atoms. SOLVE/RESOLVE used this information to obtain SAD phases and automatically build a model for the core region of the protein, which possessed the characteristic features of the right-hand polymerase motif. These results demonstrate that with modern synchrotron beamlines and software, manganese phasing is a practical tool for solving the structure of large proteins.

Laurila MRL, Salgado PS, Makeyev EV, Nettelship J, Stuart DI, Grimes JM, Bamford DH. 2005. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein. J Struct Biol, 149 (1), pp. 111-115. | Show Abstract | Read more

The RNA-dependent RNA polymerase, QDE-1, is a component of the RNA silencing pathway in Neurospora crassa. The enzymatically active carboxy-terminal fragment QDE-1 DeltaN has been expressed in Saccharomyces cerevisiae in the presence and absence of selenomethionine (SeMet). The level of SeMet incorporation was estimated by mass spectrometry to be approximately 98%. Both native and SeMet proteins were crystallized in space group P2(1) with unit cell parameters a=101.2, b=122.5, c=114.4A, beta=108.9 degrees , and 2 molecules per asymmetric unit. The native and SeMet crystals diffract to 2.3 and 3.2A, respectively, the latter are suitable for MAD structure determination.

Abrescia NGA, Cockburn JJB, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, San Martín C, Burnett RM, Stuart DI et al. 2004. Insights into assembly from structural analysis of bacteriophage PRD1. Nature, 432 (7013), pp. 68-74. | Show Abstract | Read more

The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 A resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.

Cockburn JJB, Abrescia NGA, Grimes JM, Sutton GC, Diprose JM, Benevides JM, Thomas GJ, Bamford JKH, Bamford DH, Stuart DI. 2004. Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature, 432 (7013), pp. 122-125. | Show Abstract | Read more

Membranes are essential for selectively controlling the passage of molecules in and out of cells and mediating the response of cells to their environment. Biological membranes and their associated proteins present considerable difficulties for structural analysis. Although enveloped viruses have been imaged at about 9 A resolution by cryo-electron microscopy and image reconstruction, no detailed crystallographic structure of a membrane system has been described. The structure of the bacteriophage PRD1 particle, determined by X-ray crystallography at about 4 A resolution, allows the first detailed analysis of a membrane-containing virus. The architecture of the viral capsid and its implications for virus assembly are presented in the accompanying paper. Here we show that the electron density also reveals the icosahedral lipid bilayer, beneath the protein capsid, enveloping the viral DNA. The viral membrane contains about 26,000 lipid molecules asymmetrically distributed between the membrane leaflets. The inner leaflet is composed predominantly of zwitterionic phosphatidylethanolamine molecules, facilitating a very close interaction with the viral DNA, which we estimate to be packaged to a pressure of about 45 atm, factors that are likely to be important during membrane-mediated DNA translocation into the host cell. In contrast, the outer leaflet is enriched in phosphatidylglycerol and cardiolipin, which show a marked lateral segregation within the icosahedral asymmetric unit. In addition, the lipid headgroups show a surprising degree of order.

Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI. 2004. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell, 118 (6), pp. 743-755. | Show Abstract | Read more

Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including apo, substrate analog bound, and product bound. Substrate and product binding have been observed as both binary complexes and ternary complexes with divalent cations. These structures reveal large movements of the putative RNA binding loop, which are coupled with nucleotide binding and hydrolysis, indicating how ATP hydrolysis drives RNA translocation through cooperative conformational changes. Two distinct conformations of bound nucleotide triphosphate suggest how hydrolysis is activated by RNA binding. This provides a model for chemomechanical coupling for a prototype of the large family of hexameric helicases and oligonucleotide translocating enzymes.

Lee SSJ, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA. 2004. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure, 12 (4), pp. 717-729. | Show Abstract | Read more

Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.

Makeyev EV, Grimes JM. 2004. RNA-dependent RNA polymerases of dsRNA bacteriophages. Virus Res, 101 (1), pp. 45-55. | Show Abstract | Read more

Genome replication and transcription of riboviruses are catalyzed by an RNA-dependent RNA polymerase (RdRP). RdRPs are normally associated with other virus- or/and host-encoded proteins that modulate RNA polymerization activity and template specificity. The polymerase complex of double-stranded dsRNA viruses is a large icosahedral particle (inner core) containing RdRP as a minor constituent. In phi6 and other dsRNA bacteriophages from the Cystoviridae family, the inner core is composed of four virus-specific proteins. Of these, protein P2, or Pol subunit, has been tentatively identified as RdRP by sequence comparisons, but the role of this protein in viral RNA synthesis has not been studied until recently. Here, we overview the work on the Pol subunits of phi6 and related viruses from the standpoints of function, structure and evolution.

Mancini EJ, Kainov DE, Wei H, Gottlieb P, Tuma R, Bamford DH, Stuart DI, Grimes JM. 2004. Production, crystallization and preliminary X-ray crystallographic studies of the bacteriophage phi 12 packaging motor. Acta Crystallogr D Biol Crystallogr, 60 (Pt 3), pp. 588-590. | Show Abstract | Read more

The hexameric ATPase P4 from bacteriophage phi 12 is responsible for packaging single-stranded genomic precursors into the viral procapsid. P4 was overexpressed in Escherichia coli and purified. Crystals of native and selenomethionine-derivatized P4 have been obtained that belong to space group I222, with half a hexamer in the asymmetric unit and unit-cell parameters a = 105.0, b = 130.5, c = 158.9 A. A second crystal form of different morphology can occur in the same crystallization drop. The second form belongs to space group P1, with four hexamers in the asymmetric unit and unit-cell parameters a = 114.9, b = 125.6, c = 153.9 A, alpha = 90.1, beta = 91.6, gamma = 90.4 degrees. Synchrotron X-ray diffraction data have been collected for the I222 and P1 crystal forms to 2.0 and 2.5 A resolution, respectively.

Salgado PS, Makeyev EV, Butcher SJ, Bamford DH, Stuart DI, Grimes JM. 2004. The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure, 12 (2), pp. 307-316. | Show Abstract | Read more

The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.

Sutton G, Fry E, Carter L, Sainsbury S, Walter T, Nettleship J, Berrow N, Owens R, Gilbert R, Davidson A et al. 2004. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure, 12 (2), pp. 341-353. | Show Abstract | Read more

As part of a high-throughput structural analysis of SARS-coronavirus (SARS-CoV) proteins, we have solved the structure of the non-structural protein 9 (nsp9). This protein, encoded by ORF1a, has no designated function but is most likely involved with viral RNA synthesis. The protein comprises a single beta-barrel with a fold previously unseen in single domain proteins. The fold superficially resembles an OB-fold with a C-terminal extension and is related to both of the two subdomains of the SARS-CoV 3C-like protease (which belongs to the serine protease superfamily). nsp9 has, presumably, evolved from a protease. The crystal structure suggests that the protein is dimeric. This is confirmed by analytical ultracentrifugation and dynamic light scattering. We show that nsp9 binds RNA and interacts with nsp8, activities that may be essential for its function(s).

Mancini EJ, Grimes JM, Malby R, Sutton GC, Kainov DE, Juuti JT, Makeyev EV, Tuma R, Bamford DH, Stuart DI. 2003. Order and disorder in crystals of hexameric NTPases from dsRNA bacteriophages. Acta Crystallogr D Biol Crystallogr, 59 (Pt 12), pp. 2337-2341. | Show Abstract | Read more

The packaging of genomic RNA in members of the Cystoviridae is performed by P4, a hexameric protein with NTPase activity. Across family members such as Phi6, Phi8 and Phi13, the P4 proteins show low levels of sequence identity, but presumably have similar atomic structures. Initial structure-determination efforts for P4 from Phi6 and Phi8 were hampered by difficulties in obtaining crystals that gave ordered diffraction. Diffraction from crystals of full-length P4 showed a variety of disorder and anisotropy. Subsequently, crystals of Phi13 P4 were obtained which yielded well ordered diffraction to 1.7 A. Comparison of the packing arrangements of P4 hexamers in different crystal forms and analysis of the disorder provides insights into the flexibility of this family of proteins, which might be an integral part of their biological function.

Cockburn JJB, Bamford JKH, Grimes JM, Bamford DH, Stuart DI. 2003. Crystallization of the membrane-containing bacteriophage PRD1 in quartz capillaries by vapour diffusion. Acta Crystallogr D Biol Crystallogr, 59 (Pt 3), pp. 538-540. | Show Abstract | Read more

Crystals of bacteriophage PRD1, a virus containing an internal lipid bilayer, have been grown in thin-walled quartz capillary tubes by vapour diffusion as a means of eliminating mechanical handling of the crystals during data collection. It has been found that the addition of polyethylene glycol 20 000 (PEG 20K) to the mother liquor that bathes the crystals allows far higher resolution diffraction intensities to be observed. Growing and treating the crystals in this way has produced a small number of crystals which are particularly amenable to X-ray diffraction analysis.

Gilbert RJ, Grimes JM, Stuart DI. 2003. Hybrid vigor: hybrid methods in viral structure determination. Adv Protein Chem, 64 pp. 37-91. | Read more

Diprose JM, Grimes JM, Sutton GC, Burroughs JN, Meyer A, Maan S, Mertens PPC, Stuart DI. 2002. The core of bluetongue virus binds double-stranded RNA. J Virol, 76 (18), pp. 9533-9536. | Show Abstract | Read more

Double-stranded RNA (dsRNA) viruses conceal their genome from the host to avoid triggering unfavorable cellular responses. The crystal structure of the core of one such virus, bluetongue virus, reveals an outer surface festooned with dsRNA. This may represent a deliberate strategy to sequester dsRNA released from damaged particles to prevent host cell shutoff.

Bamford JKH, Cockburn JJB, Diprose J, Grimes JM, Sutton G, Stuart DI, Bamford DH. 2002. Diffraction quality crystals of PRD1, a 66-MDa dsDNA virus with an internal membrane. J Struct Biol, 139 (2), pp. 103-112. | Show Abstract | Read more

It has proved difficult to obtain well diffracting single crystals of macromolecular complexes rich in lipid. We report here the path that has led to crystals of the bacteriophage PRD1, a particle containing approximately 2,000 protein subunits from 18 different protein species, around 10 of which are integral membrane proteins associated with a host-derived lipid bilayer of some 12,500 lipid molecules. These crystals are capable of diffracting X-rays to Bragg spacings below 4A. It is hoped that some lessons learned from PRD1 will be applicable to other lipidic systems and that these crystals will allow, as a proof of principle, the determination of the structure of the virus in terms of a detailed atomic model.

Diprose JM, Burroughs JN, Sutton GC, Goldsmith A, Gouet P, Malby R, Overton I, Ziéntara S, Mertens PP, Stuart DI, Grimes JM. 2001. Translocation portals for the substrates and products of a viral transcription complex: the bluetongue virus core. EMBO J, 20 (24), pp. 7229-7239. | Show Abstract | Read more

The bluetongue virus core is a molecular machine that simultaneously and repeatedly transcribes mRNA from 10 segments of viral double-stranded RNA, packaged in a liquid crystalline array. To determine how the logistical problems of transcription within a sealed shell are solved, core crystals were soaked with various ligands and analysed by X-ray crystallography. Mg(2+) ions produce a slight expansion of the capsid around the 5-fold axes. Oligonucleotide soaks demonstrate that the 5-fold pore, opened up by this expansion, is the exit site for mRNA, whilst nucleotide soaks pinpoint a separate binding site that appears to be a selective channel for the entry and exit of substrates and by-products. Finally, nucleotides also bind to the outer core layer, providing a substrate sink.

Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI. 2001. A mechanism for initiating RNA-dependent RNA polymerization. Nature, 410 (6825), pp. 235-240. | Show Abstract | Read more

In most RNA viruses, genome replication and transcription are catalysed by a viral RNA-dependent RNA polymerase. Double-stranded RNA viruses perform these operations in a capsid (the polymerase complex), using an enzyme that can read both single- and double-stranded RNA. Structures have been solved for such viral capsids, but they do not resolve the polymerase subunits in any detail. Here we show that the 2 A resolution X-ray structure of the active polymerase subunit from the double-stranded RNA bacteriophage straight phi6 is highly similar to that of the polymerase of hepatitis C virus, providing an evolutionary link between double-stranded RNA viruses and flaviviruses. By crystal soaking and co-crystallization, we determined a number of other structures, including complexes with oligonucleotide and/or nucleoside triphosphates (NTPs), that suggest a mechanism by which the incoming double-stranded RNA is opened up to feed the template through to the active site, while the substrates enter by another route. The template strand initially overshoots, locking into a specificity pocket, and then, in the presence of cognate NTPs, reverses to form the initiation complex; this process engages two NTPs, one of which acts with the carboxy-terminal domain of the protein to prime the reaction. Our results provide a working model for the initiation of replication and transcription.

Bamford DH, Gilbert RJ, Grimes JM, Stuart DI. 2001. Macromolecular assemblies: greater than their parts. Curr Opin Struct Biol, 11 (1), pp. 107-113. | Show Abstract | Read more

Increasingly powerful methods of analysis have opened up complex macromolecular assemblies to scrutiny at atomic detail. They reveal not only examples of assembly from preformed and prefolded components, but also examples in which the act of assembly drives changes to the components. In the most extreme of these examples, some of the components only achieve a folded state when the complex is formed. Striking results have appeared for systems ranging from the already mature field of virus structure and assembly, where notable progress has been made for rather complex capsids, to descriptions of ribosome structures in atomic detail, where recent results have emerged at breathtaking speed.

Butcher SJ, Makeyev EV, Grimes JM, Stuart DI, Bamford DH. 2000. Crystallization and preliminary X-ray crystallographic studies on the bacteriophage phi6 RNA-dependent RNA polymerase. Acta Crystallogr D Biol Crystallogr, 56 (Pt 11), pp. 1473-1475. | Show Abstract | Read more

The RNA-dependent RNA polymerase (P2) from bacteriophage Phi6 has been cloned and the protein overexpressed in Escherichia coli to produce an active enzyme. A fully substituted selenomethionyl version of the protein has also been produced. Crystals of both proteins have been grown; most belong to the monoclinic space group P2(1), with unit-cell parameters a = 105.9, b = 94.0, c = 140.9 A, beta = 101.4 degrees, but some are trigonal (space group P3(1) or P3(2)), with unit-cell parameters a = b = 110.1, c = 159.4 A, gamma = 120 degrees. Both crystal forms occur in the same crystallization drop and are morphologically indistinguishable. Native data sets have been collected from both types of crystals to better than 3 A resolution.

Mongkolsapaya J, Grimes JM, Chen N, Xu XN, Stuart DI, Jones EY, Screaton GR. 1999. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol, 6 (11), pp. 1048-1053. | Show Abstract | Read more

TRAIL, an apoptosis inducing ligand, has at least four cell surface receptors including the death receptor DR5. Here we report the crystal structure at 2.2 A resolution of a complex between TRAIL and the extracellular region of DR5. TRAIL forms a central homotrimer around which three DR5 molecules bind. Radical differences in the surface charge of the ligand, together with variation in the alignment of the two receptor domains confer specificity between members of these ligand and receptor families. The existence of a switch mechanism allowing variation in receptor domain alignment may mean that it is possible to engineer receptors with multiple specificities by exploiting contact positions unique to individual receptor-ligand pairs.

Grimes JM, Fuller SD, Stuart DI. 1999. Complementing crystallography: the role of cryo-electron microscopy in structural biology. Acta Crystallogr D Biol Crystallogr, 55 (Pt 10), pp. 1742-1749. | Show Abstract | Read more

Dramatic improvements in experimental methods and computational techniques have revolutionized three-dimensional image reconstruction from electron micrographs (EM) of vitrified samples. Recent results include the first determination of a protein fold (for the core protein of the hepatitis B virus) by non-crystalline imaging techniques. These developments have generated interest within the crystallographic community and have led to a re-evaluation of the technique, particularly amongst those working in the field of virus structure or struggling with the phasing of large macromolecular assemblies. A simple discussion of the techniques of EM image reconstruction and its advantages and problems in terms familiar to crystallographers will hopefully allow an appreciation of the essential complementarity of the two techniques and the practical potentials for phasing applications.

Fry EE, Grimes J, Stuart DI. 1999. Virus crystallography. Mol Biotechnol, 12 (1), pp. 13-23. | Show Abstract | Read more

Virus crystallography can provide atomic resolution structures for intact isometric virus particles and components thereof. The methodology is illustrated by reference to a particularly complex example, the core of the bluetongue virus (700 A).

Diprose JM, Grimes JM, Gouet P, Malby R, Burroughs JN, Lescar J, Rassmussen B, Mertens PPC, Stuart DI. 1999. Bluetongue virus: the role of synchrotron radiation JOURNAL OF SYNCHROTRON RADIATION, 6 (4), pp. 865-874. | Show Abstract | Read more

The determination of the structure of the transcriptionally active core particle of bluetongue virus is discussed. This particle is approximately 700 Å in diameter and reasonably well ordered, but fragile, crystals have been obtained from two different serotypes of the virus. Cryocrystallography proved difficult and a large number of crystals were analysed at room temperature to accumulate a reasonably complete data set. The effects of synchrotron optics, sta tion design and detector on the signal-to-noise for these weak data are discussed, with particular reference to station ID2 at the European Synchrotron Radiation Facility. Once the data had been gathered, structure determination was straightforward, using a model derived from a combination of electron microscopy and protein crystallography to obtain initial phases. Despite apparent isomorphism, it is suspected that the crystal lattice 'ages', perhaps reflecting both the inevitable weakness of the forces holding crystals of such a large macromolecular complex together and flexibility in the particle.

Hill CL, Booth TF, Prasad BV, Grimes JM, Mertens PP, Sutton GC, Stuart DI. 1999. The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol, 6 (6), pp. 565-568. | Show Abstract | Read more

Cytoplasmic polyhedrosis virus (CPV) is unique among the double-stranded RNA viruses of the family Reoviridae in having a single capsid layer. Analysis by cryo-electron microscopy allows comparison of the single shelled CPV and orthoreovirus with the high resolution crystal structure of the inner shell of the bluetongue virus (BTV) core. This suggests that the novel arrangement identified in BTV, of 120 protein subunits in a so-called 'T=2' organization, is a characteristic of the Reoviridae and allows us to delineate structural similarities and differences between two subgroups of the family--the turreted and the smooth-core viruses. This in turn suggests a coherent picture of the structural organization of many dsRNA viruses.

Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP. 1999. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell, 97 (4), pp. 481-490. | Show Abstract | Read more

The concentration of double-stranded RNA within the bluetongue virus core renders the genome segments liquid crystalline. Powder diffraction rings confirm this local ordering with a 30 A separation between strands. Determination of the structure of the bluetongue virus core serotype 10 and comparison with that of serotype 1 reveals most of the genomic double-stranded RNA, packaged as well-ordered layers surrounding putative transcription complexes at the apices of the particle. The outer layer of RNA is sufficiently well ordered by interaction with the capsid that a model can be built and extended to the less-ordered inner layers, providing a structural framework for understanding the mechanism of this complex transcriptional machine. We show that the genome segments maintain local order during transcription.

Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Ziéntara S, Mertens PP, Stuart DI. 1998. The atomic structure of the bluetongue virus core. Nature, 395 (6701), pp. 470-478. | Show Abstract | Read more

The structure of the core particle of bluetongue virus has been determined by X-ray crystallography at a resolution approaching 3.5 A. This transcriptionally active compartment, 700 A in diameter, represents the largest molecular structure determined in such detail. The atomic structure indicates how approximately 1,000 protein components self-assemble, using both the classical mechanism of quasi-equivalent contacts, which are achieved through triangulation, and a different method, which we term geometrical quasi-equivalence.

Grimes JM, Stuart DI. 1998. Large unit cells and cellular mechanics. Nat Struct Biol, 5 Suppl (8), pp. 630-634. | Show Abstract | Read more

Developments in synchrotron radiation mean that the methodological and technological tools are in place to determine the structures of large multi- component macromolecular machines.

Burtnick LD, Koepf EK, Grimes J, Jones EY, Stuart DI, McLaughlin PJ, Robinson RC. 1997. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell, 90 (4), pp. 661-670. | Show Abstract | Read more

The structure of gelsolin has been determined by crystallography and comprises six structurally related domains that, in a Ca2+-free environment, pack together to form a compact globular structure in which the putative actin-binding sequences are not sufficiently exposed to enable binding to occur. We propose that binding Ca2+ can release the connections that join the N- and C-terminal halves of gelsolin, enabling each half to bind actin relatively independently. Domain shifts are proposed in response to Ca2+ as bases for models of how gelsolin acts to sever, cap, or nucleate F-actin filaments. The structure also invites discussion of polyphosphoinositide binding to segment 2 and suggests how mutation at Asp-187 could initiate a series of events that lead to deposition of amyloid plaques, as observed in victims of familial amyloidosis (Finnish type).

Basak AK, Grimes JM, Gouet P, Roy P, Stuart DI. 1997. Structures of orbivirus VP7: implications for the role of this protein in the viral life cycle. Structure, 5 (7), pp. 871-883. | Show Abstract | Read more

BACKGROUND: Bluetongue virus (BTV) is the prototypical virus of the genus orbivirus in the family Reoviridae and causes an economically important disease in domesticated animals, such as sheep. BTV is larger and more complex than any virus for which comprehensive atomic level structural information is available. Its capsid is made primarily from four structural proteins two of which, VP3 and VP7, form a core which remains intact as the virus penetrates the host cell. Each core particle contains 780 copies of VP7. The architecture of the trimeric VP7 molecule has been revealed by crystallographic analysis and is unlike other viral coat proteins reported to date. RESULTS: Two new crystal structures of VP7 have been solved, one (a cleavage product) at close to atomic resolution and the other at lower resolution. The VP7 subunit consists of two domains. The smaller, 'upper', domain is exposed on the core surface and has the beta jelly-roll motif common to many capsid proteins. The second, 'lower', domain is composed of a bundle of alpha helices. The cleavage product comprises the upper domain, which forms a rigid invariant trimeric fragment. The lower resolution structure of the intact molecule indicates that the alpha-helical domain can rotate about the linker to the upper domain to adopt radically different orientations with respect to the threefold axis in the intact protein. CONCLUSIONS: The crystal structures of VP7 reveal a remarkable mix of rigidity and flexibility that may provide insights towards understanding how VP7 interacts with the other capsid proteins of different stoichiometries. These results suggest that substantial conformational changes in VP7 occur at some stage in the viral life cycle. Such changes may be related to the central role that VP7 is likely to play in cell attachment and membrane penetration.

Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad BV. 1997. An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure, 5 (7), pp. 885-893. | Show Abstract | Read more

BACKGROUND: Bluetongue virus (BTV), which belongs to the Reoviridae family and orbivirus genus, is a non-enveloped, icosahedral, double-stranded RNA virus. Several protein layers enclose its genome; upon cell entry the outer layer is stripped away leaving a core, the surface of which is composed of VP7. The structure of the trimeric VP7 molecule has previously been determined using X-ray crystallography. The articulated VP7 subunit consists of two domains, one which is largely alpha-helical and the other, smaller domain, is a beta barrel with jelly-roll topology. The relative orientations of these two domains vary in different crystal forms. The structure of VP7 and the organizations of 780 subunits of this molecule in the core of virus is central to the assembly and function of BTV. RESULTS: A 23 A resolution map of the core, determined using electron cryomicroscopy (cryoEM) data, reveals that the 260 trimers of VP7 are organized on a rather precise T = 13 laevo icosahedral lattice, in accordance with the theory of quasi-equivalence. The VP7 layer occupies a shell that is between 260 A and 345 A from the centre of the core. Below this radius (230-260 A) lies the T = 1 layer of 120 molecules of VP3. By fitting the X-ray structure of an individual VP7 trimer onto the cryoEM BTV core structure, we have generated an atomic model of the VP7 layer of BTV. This demonstrates that one of the molecular structures seen in crystals of the isolated VP7 corresponds to the in vivo conformation of the molecule in the core. CONCLUSIONS: The beta-barrel domains of VP7 are external to the core and interact with protein in the outer layer of the mature virion. The lower, alpha-helical domains of VP7 interact with VP3 molecules which form the inner layer of the BTV core. Adjacent VP7 trimer-trimer interactions in the T = 13 layer are mediated principally through well-defined regions in the broader lower domains, to form a structure that conforms well with that expected from the theory of quasi-equivalence with no significant conformational changes within the individual trimers. The VP3 layer determines the particle size and forms a rather smooth surface upon which the two-dimensional lattice of VP7 trimers is laid down.

Basak AK, Gouet P, Grimes J, Roy P, Stuart D. 1996. Crystal structure of the top domain of African horse sickness virus VP7: comparisons with bluetongue virus VP7. J Virol, 70 (6), pp. 3797-3806. | Show Abstract

The baculovirus-expressed core protein VP7 of African horse sickness virus serotype 4 (AHSV-4) has been purified to homogeneity and crystallized in the presence of 2.8 M urea. The X-ray structure has been solved to a 2.3-Angstroms (1 Angstrom = 0.1 nm) resolution with an Rfactor of 19.8%. The structure of AHSV VP7 reveals that during crystallization, the two-domain protein is cleaved and only the top domain remains. A similar problem was encountered previously with bluetongue virus (BTV) VP7 (whose structure has been reported), showing that the connections between the top and the bottom domains are rather weak for these two distinct orbiviruses. The top domains of both BTV and AHSV VP7 are trimeric and structurally very similar. The electron density maps show that they both possess an extra electron density feature along their molecular threefold axes, which is most likely due to an unidentified ion. The characteristics of the molecular surface of BTV and AHSV VP7 suggest why AHSV VP7 is much less soluble than BTV VP7 and indicate the possibility of attachment to the cell via attachment of an Arg-Gly-Asp (RGD) motif in the top domain of VP7 to a cellular integrin for both of these orbiviruses.

Burroughs JN, Grimes JM, Mertens PP, Stuart DI. 1995. Crystallization and preliminary X-ray analysis of the core particle of bluetongue virus. Virology, 210 (1), pp. 217-220. | Show Abstract | Read more

Core particles of bluetongue virus serotype 1 (South Africa) have been crystallized. The crystals, which grow up to 0.8 mm in diameter, belong to a primitive orthorhombic space group and have point group symmetry 222. The unit cell dimensions are 754 x 796 x 823 A3 and the crystallographic asymmetric unit contains one-half of a core particle. The best crystals diffract strongly to 4.8 A Bragg spacings, which is the maximum resolution to which we can measure data with the detectors available, suggesting that useful diffraction extends well beyond this. Core particles of serotype 10 have also been crystallized but the crystals have yet to be analyzed by X-ray diffraction.

Grimes J, Basak AK, Roy P, Stuart D. 1995. The crystal structure of bluetongue virus VP7. Nature, 373 (6510), pp. 167-170. | Show Abstract | Read more

Bluetongue virus (BTV), a representative of the orbivirus genus of the Reoviridae, is considerably larger (at 80 nm across), and structurally more complex, than any virus for which we have comprehensive structural information. Orbiviruses infect mammalian hosts through insect vectors and cause economically important diseases of domesticated animals. They possess a segmented double-stranded RNA genome within a capsid composed of four major types of polypeptide chains. An outer layer of VP2 and VP5 is removed as the virus enters the target cell, to leave an intact core within the cell. This core is 70 nm across and composed of 780 copies of VP7 (M(r) 38K) that, as trimers, form 260 'bristly' capsomeres clothing an inner scaffold constructed from VP3 (M(r) 103K). We report here the crystal structure of VP7 from BTV serotype 10, which reveals a molecular architecture not seen previously in viral structural proteins. Each subunit consists of two domains, one a beta-sandwich, the other a bundle of alpha-helices, and a short carboxy-terminal arm which might tie trimers together during capsid formation. A concentration of methionine residues at the core of the molecule could provide plasticity, relieving structural mismatches during assembly.

Gamblin SJ, Davies GJ, Grimes JM, Jackson RM, Littlechild JA, Watson HC. 1991. Activity and specificity of human aldolases. J Mol Biol, 219 (4), pp. 573-576. | Show Abstract | Read more

The structure of the type I fructose 1,6-bisphosphate aldolase from human muscle has been extended from 3 A to 2 A resolution. The improvement in the resulting electron density map is such that the 20 or so C-terminal residues, known to be associated with activity and isozyme specificity, have been located. The side-chain of the Schiff's base-forming lysine 229 is located towards the centre of an eight-stranded beta-barrel type structure. The C-terminal "tail" extends from the rim of the beta-barrel towards lysine 229, thus forming part of the active site of the enzyme. This structural arrangement appears to explain the difference in activity and specificity of the three tissue-specific human aldolases and helps with our understanding of the type I aldolase reaction mechanism.

Renner M, Bertinelli M, Leyrat C, Paesen GC, Saraiva de Oliveira LF, Huiskonen JT, Grimes JM. 2016. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. Elife, 5 (FEBRUARY2016), pp. e12627. | Show Abstract | Read more

Non-segmented, (-)RNA viruses cause serious human diseases. Human metapneumovirus (HMPV), an emerging pathogen of this order of viruses (Mononegavirales) is one of the main causes of respiratory tract illness in children. To help elucidate the assembly mechanism of the nucleocapsid (the viral RNA genome packaged by the nucleoprotein N) we present crystallographic structures of HMPV N in its assembled RNA-bound state and in a monomeric state, bound to the polymerase cofactor P. Our structures reveal molecular details of how P inhibits the self-assembly of N and how N transitions between the RNA-free and RNA-bound conformational state. Notably, we observe a role for the C-terminal extension of N in directly preventing premature uptake of RNA by folding into the RNA-binding cleft. Our structures suggest a common mechanism of how the growth of the nucleocapsid is orchestrated, and highlight an interaction site representing an important target for antivirals.

Baskaran Y, Ang KC, Anekal PV, Chan WL, Grimes JM, Manser E, Robinson RC. 2015. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun, 6 pp. 8681. | Show Abstract | Read more

PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4-PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1-GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4.

Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, Vonrhein C, Bricogne G, Stuart DI, Grimes JM, Fodor E. 2015. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature, 527 (7576), pp. 114-117. | Show Abstract | Read more

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.

Paesen GC, Collet A, Sallamand C, Debart F, Vasseur J-J, Canard B, Decroly E, Grimes JM. 2015. X-ray structure and activities of an essential Mononegavirales L-protein domain. Nat Commun, 6 pp. 8749. | Show Abstract | Read more

The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site ((SAM)P) also contains a novel pocket ((NS)P) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the (SAM)P-adjoining site holding the nucleotides undergoing methylation ((SUB)P) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2'O and N7 positions, and also displays nucleotide triphosphatase activity.

Lee WL, Grimes JM, Robinson RC. 2015. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat Struct Mol Biol, 22 (3), pp. 248-255. | Show Abstract | Read more

Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

Xue B, Leyrat C, Grimes JM, Robinson RC. 2014. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci U S A, 111 (43), pp. E4596-E4605. | Show Abstract | Read more

Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.

Leyrat C, Paesen GC, Charleston J, Renner M, Grimes JM. 2014. Structural insights into the human metapneumovirus glycoprotein ectodomain. J Virol, 88 (19), pp. 11611-11616. | Show Abstract | Read more

Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G.

Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. 2014. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. Elife, 3 (3), pp. e02674. | Show Abstract | Read more

The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to 'gene end' RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses.DOI: http://dx.doi.org/10.7554/eLife.02674.001.

Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. 2014. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus. Structure, 22 (1), pp. 136-148. | Show Abstract | Read more

The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses.

Rissanen I, Grimes JM, Pawlowski A, Mäntynen S, Harlos K, Bamford JKH, Stuart DI. 2013. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure, 21 (5), pp. 718-726. | Show Abstract | Read more

It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.

Bahar MW, Sarin LP, Graham SC, Pang J, Bamford DH, Stuart DI, Grimes JM. 2013. Structure of a VP1-VP3 complex suggests how birnaviruses package the VP1 polymerase. J Virol, 87 (6), pp. 3229-3236. | Show Abstract | Read more

Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.

DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC, Stuart DI, Wingfield PT. 2013. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure, 21 (1), pp. 133-142. | Show Abstract | Read more

Chronic hepatitis B virus (HBV) infection afflicts millions worldwide with cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a nonparticulate variant of the protein (core antigen, HBcAg) that forms the building-blocks of capsids. HBeAg is not required for virion production, but is implicated in establishing immune tolerance and chronic infection. Here, we report the crystal structure of HBeAg, which clarifies how the short N-terminal propeptide of HBeAg induces a radically altered mode of dimerization relative to HBcAg (∼140° rotation), locked into place through formation of intramolecular disulfide bridges. This structural switch precludes capsid assembly and engenders a distinct antigenic repertoire, explaining why the two antigens are cross-reactive at the T cell level (through sequence identity) but not at the B cell level (through conformation). The structure offers insight into how HBeAg may establish immune tolerance for HBcAg while evading its robust immunogenicity.

47

Thank you for registering your interest

We were unable to record your request to register for interest in future opportunities. Please try again and if problems persist contact us at webteam@ndm.ox.ac.uk